Applied Calculus

Homework 6

Due in class, November 17, 2015

1. Find the minimum of the function $f(x, y)=x^{2}-x+y+y^{2}$.
2. (From MLS, p. 406.) Find the rectangle with the largest area that can be placed inside the region bounded between the curve $y=4-x^{2}$ and the horizontal axis $y=0$.
(a) Solve this problem by formulating it as a maximization problem for a function of one variable.
(b) Solve this problem by using a Lagrange multiplier.
3. Use a Lagrange multiplier to find the point on the unit circle $x^{2}+y^{2}=1$ closest to $(1,2)$.
4. Use Lagrange multipliers to find the maximum and minimum values of the function

$$
f(x, y, z)=3 x-y+2 z
$$

subject to the constraints

$$
x+y-z=0 \quad \text { and } \quad x^{2}+3 y^{2}=1
$$

5. Heron's formula states that the area of a triangle with side lengths x, y, and z is

$$
A=\sqrt{s(s-x)(s-y)(s-z)}
$$

where s is the semiperimeter of the triangle, i.e.,

$$
s=\frac{x+y+z}{2} .
$$

Use a Lagrange multiplier to show that the triangle with maximum area for a given perimeter is equilateral.

