Operations Research

Homework 2

Due via Moodle on Tuesday, September 15, 2020

1. Find all solutions for the underdetermined linear system $A \boldsymbol{x}=\boldsymbol{b}$, where

$$
A=\left(\begin{array}{cccc}
2 & 2 & -1 & -4 \\
1 & 1 & 1 & 1 \\
1 & 1 & 0 & -1 \\
1 & 1 & 3 & 5
\end{array}\right) \quad \text { and } \quad \boldsymbol{b}=\left(\begin{array}{c}
-5 \\
2 \\
-1 \\
8
\end{array}\right)
$$

2. Reconsider Problem 1 above: State at least two different basic solutions. Make sure that you state at least one of these is a basic feasible solution, i.e., a solution where all components are non-negative.
3. Reconsider Problem 1 from Homework Set 1: Minimize

$$
z=8 x+12 y
$$

subject to

$$
\begin{gathered}
5 x+2 y \geq 20 \\
4 x+3 y \geq 24 \\
y \geq 2 \\
x, y \geq 0
\end{gathered}
$$

Introduce slack variables to write this linear programming problem in the standard form: Minimize

$$
z=\boldsymbol{c}^{T} \boldsymbol{x}
$$

subject to

$$
\begin{gathered}
A \boldsymbol{x}=\boldsymbol{b} \\
\boldsymbol{x} \geq 0
\end{gathered}
$$

where the coefficients $\boldsymbol{b}, \boldsymbol{c}$, and the decision variables \boldsymbol{x} are written as column vectors, and A is a matrix of matching dimension.

