


will be installed under just enough roads to provide some connection between every pair
of stations. The question is where the lines should be laid to accomplish this with a min-
imum total number of miles of line installed. (This is an example of the minimum span-
ning tree problem to be discussed in Sec. 9.4.)

The third problem is that more people want to take the tram ride from the park en-
trance to station T than can be accommodated during the peak season. To avoid unduly
disturbing the ecology and wildlife of the region, a strict ration has been placed on the
number of tram trips that can be made on each of the roads per day. (These limits differ
for the different roads, as we shall describe in detail in Sec. 9.5.) Therefore, during the
peak season, various routes might be followed regardless of distance to increase the num-
ber of tram trips that can be made each day. The question pertains to how to route the
various trips to maximize the number of trips that can be made per day without violating
the limits on any individual road. (This is an example of the maximum flow problem to
be discussed in Sec. 9.5.)
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FIGURE 9.1
The road system for Seervada
Park.

A relatively extensive terminology has been developed to describe the various kinds of
networks and their components. Although we have avoided as much of this special vo-
cabulary as we could, we still need to introduce a considerable number of terms for use
throughout the chapter. We suggest that you read through this section once at the outset
to understand the definitions and then plan to return to refresh your memory as the terms
are used in subsequent sections. To assist you, each term is highlighted in boldface at the
point where it is defined.

A network consists of a set of points and a set of lines connecting certain pairs of the
points. The points are called nodes (or vertices); e.g., the network in Fig. 9.1 has seven
nodes designated by the seven circles. The lines are called arcs (or links or edges or
branches); e.g., the network in Fig. 9.1 has 12 arcs corresponding to the 12 roads in the
road system. Arcs are labeled by naming the nodes at either end; for example, AB is the
arc between nodes A and B in Fig. 9.1.

9.2 THE TERMINOLOGY OF NETWORKS



Algorithm for the Minimum Spanning Tree Problem.

1. Select any node arbitrarily, and then connect it (i.e., add a link) to the nearest distinct node.
2. Identify the unconnected node that is closest to a connected node, and then connect

these two nodes (i.e., add a link between them). Repeat this step until all nodes have
been connected.

3. Tie breaking: Ties for the nearest distinct node (step 1) or the closest unconnected node
(step 2) may be broken arbitrarily, and the algorithm must still yield an optimal solu-
tion. However, such ties are a signal that there may be (but need not be) multiple op-
timal solutions. All such optimal solutions can be identified by pursuing all ways of
breaking ties to their conclusion.

The fastest way of executing this algorithm manually is the graphical approach il-
lustrated next.

Applying This Algorithm to the Seervada Park 
Minimum Spanning Tree Problem

The Seervada Park management (see Sec. 9.1) needs to determine under which roads tele-
phone lines should be installed to connect all stations with a minimum total length of line.
Using the data given in Fig. 9.1, we outline the step-by-step solution of this problem.

Nodes and distances for the problem are summarized below, where the thin lines now
represent potential links.
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the analysis focuses on outgoing trips only.) To avoid unduly disturbing the ecology and
wildlife of the region, strict upper limits have been imposed on the number of outgoing
trips allowed per day in the outbound direction on each individual road. For each road,
the direction of travel for outgoing trips is indicated by an arrow in Fig. 9.6. The number
at the base of the arrow gives the upper limit on the number of outgoing trips allowed per
day. Given the limits, one feasible solution is to send 7 trams per day, with 5 using the
route O � B � E � T, 1 using O � B � C � E � T, and 1 using O � B � C �
E � D � T. However, because this solution blocks the use of any routes starting with 
O � C (because the E � T and E � D capacities are fully used), it is easy to find bet-
ter feasible solutions. Many combinations of routes (and the number of trips to assign to
each one) need to be considered to find the one(s) maximizing the number of trips made
per day. This kind of problem is called a maximum flow problem.

In general terms, the maximum flow problem can be described as follows.

1. All flow through a directed and connected network originates at one node, called the
source, and terminates at one other node, called the sink. (The source and sink in the
Seervada Park problem are the park entrance at node O and the scenic wonder at node
T, respectively.)

2. All the remaining nodes are transshipment nodes. (These are nodes A, B, C, D, and E
in the Seervada Park problem.)

3. Flow through an arc is allowed only in the direction indicated by the arrowhead, where
the maximum amount of flow is given by the capacity of that arc. At the source, all
arcs point away from the node. At the sink, all arcs point into the node.

4. The objective is to maximize the total amount of flow from the source to the sink. This
amount is measured in either of two equivalent ways, namely, either the amount leav-
ing the source or the amount entering the sink.

Some Applications

Here are some typical kinds of applications of the maximum flow problem.

1. Maximize the flow through a company’s distribution network from its factories to its
customers.

2. Maximize the flow through a company’s supply network from its vendors to its factories.
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The Seervada Park maximum
flow problem.



DC � W2, and F1 � W1 � W2) for shipping to W2. Factory F2 has just one route to
W2 (F2 � DC � W2) and one to W1 (F2 � DC � W2 � W1). The cost per unit
shipped through each shipping lane is shown next to the arrow. Also shown next to F1 �
F2 and DC � W2 are the maximum amounts that can be shipped through these lanes.
The other lanes have sufficient shipping capacity to handle everything these factories can
send.

The decision to be made concerns how much to ship through each shipping lane. The
objective is to minimize the total shipping cost.

Formulation as a Linear Programming Problem. With seven shipping lanes, we
need seven decision variables (xF1-F2, xF1-DC, xF1-W1, xF2-DC, xDC-W2, xW1-W2, xW2-W1) to
represent the amounts shipped through the respective lanes.

There are several restrictions on the values of these variables. In addition to the usual
nonnegativity constraints, there are two upper-bound constraints, xF1-F2 � 10 and 
xDC-W2 � 80, imposed by the limited shipping capacities for the two lanes, F1 � F2 and
DC � W2. All the other restrictions arise from five net flow constraints, one for each of
the five locations. These constraints have the following form.

Net flow constraint for each location:

Amount shipped out � amount shipped in � required amount.

As indicated in Fig. 3.13, these required amounts are 50 for F1, 40 for F2, �30 for W1,
and �60 for W2.
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Distribution Unlimited Co.



What is the required amount for DC? All the units produced at the factories are ulti-
mately needed at the warehouses, so any units shipped from the factories to the distribu-
tion center should be forwarded to the warehouses. Therefore, the total amount shipped
from the distribution center to the warehouses should equal the total amount shipped from
the factories to the distribution center. In other words, the difference of these two ship-
ping amounts (the required amount for the net flow constraint) should be zero.

Since the objective is to minimize the total shipping cost, the coefficients for the ob-
jective function come directly from the unit shipping costs given in Fig. 3.13. Therefore,
by using money units of hundreds of dollars in this objective function, the complete lin-
ear programming model is

Minimize Z � 2xF1-F2 � 4xF1-DC � 9xF1-W1 � 3xF2-DC � xDC-W2

� 3xW1-W2 � 2xW2-W1,

subject to the following constraints:

1. Net flow constraints:
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To give you a better perspective about the great impact linear programming can have, we
now present three case studies of real applications. Each of these is a classic application,
initiated in the early 1980s, that has come to be regarded as a standard of excellence for
future applications of linear programming. The first one will bear some strong similari-
ties to the Wyndor Glass Co. problem, but on a realistic scale. Similarly, the second and
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�xF1-F2 � xF1-DC � xF1-W1 � 50 (factory 1)
�xF1-F2 � xF2-DC � 40 (factory 2)

� xF1-DC � xF2-DC � xDC-W2 � 0 (distribution 
center)

� xF1-W1 � xW1-W2 � xW2-W1 � �30 (warehouse 1)
� xDC-W2 � xW1-W2 � xW2-W1 � �60 (warehouse 2)

2. Upper-bound constraints:

xF1-F2 � 10, xDC-W2 � 80

3. Nonnegativity constraints:

xF1-F2 � 0, xF1-DC � 0, xF1-W1 � 0, xF2-DC � 0, xDC-W2 � 0,
xW1-W2 � 0, xW2-W1 � 0.

You will see this problem again in Sec. 9.6, where we focus on linear programming
problems of this type (called the minimum cost flow problem). In Sec. 9.7, we will solve
for its optimal solution:

xF1-F2 � 0, xF1-DC � 40, xF1-W1 � 10, xF2-DC � 40, xDC-W2 � 80,
xW1-W2 � 0, xW2-W1 � 20.

The resulting total shipping cost is $49,000.
You also will see a case study involving a much larger problem of this same type at

the end of the next section.


