Complex Analysis

Homework 1

Due in class Wednesday, September 22, 2021

1. Two fields K and L are isomorphic if there exists a bijective map $\phi \colon K \to L$ such that $\phi(x+y) = \phi(x) + \phi(y)$ and $\phi(xy) = \phi(x) \phi(y)$ for all $x, y \in K$. Show that \mathbb{C} is isomorphic to the set of real 2×2 matrices of the form

$$\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$

endowed with the usual matrix addition and matrix multiplication.

- 2. Derive the Cauchy–Riemann equations by referring to the previous problem. *Hint:* Interpret $f: \Omega \subset \mathbb{C} \to \mathbb{C}$ as a map between subsets of \mathbb{R}^2 and compute its Jacobian. The CR-equations now follow by inspection. (Explain carefully why!)
- 3. Let $\Omega \subset \mathbb{C}$ be open and $f: \Omega \to \mathbb{C}$ be holomorphic. Set $\Omega^* = \{\overline{z}: z \in \Omega\}$ and define $g: \Omega^* \to \mathbb{C}$ by

$$g(z) = f(\overline{z}) \,.$$

Show that g is holomorphic with

$$g'(z) = \overline{f'(\overline{z})}.$$

- 4. Let $\Omega \subset \mathbb{C}$ be open and $f: \Omega \to \mathbb{C}$ be holomorphic with Re f constant. Prove that f is a constant function.
- 5. Determine the radius of convergence of the power series $\sum_{n=1}^{\infty} a_n z^n$ when
 - (a) $a_n = n^2$

(b)
$$a_n = n!$$

(c) $a_n = (n!)^3/(3n)!$

Hint: Use Stirling's formula, which says that

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{\mathrm{e}}\right)^n$$

as $n \to \infty$.