Complex Analysis

Homework 1

Due in class Wednesday, September 22, 2021

1. Two fields K and L are isomorphic if there exists a bijective map $\phi: K \rightarrow L$ such that $\phi(x+y)=\phi(x)+\phi(y)$ and $\phi(x y)=\phi(x) \phi(y)$ for all $x, y \in K$.
Show that \mathbb{C} is isomorphic to the set of real 2×2 matrices of the form

$$
\left(\begin{array}{cc}
a & -b \\
b & a
\end{array}\right)
$$

endowed with the usual matrix addition and matrix multiplication.
2. Derive the Cauchy-Riemann equations by referring to the previous problem.

Hint: Interpret $f: \Omega \subset \mathbb{C} \rightarrow \mathbb{C}$ as a map between subsets of \mathbb{R}^{2} and compute its Jacobian. The CR-equations now follow by inspection. (Explain carefully why!)
3. Let $\Omega \subset \mathbb{C}$ be open and $f: \Omega \rightarrow \mathbb{C}$ be holomorphic. Set $\Omega^{*}=\{\bar{z}: z \in \Omega\}$ and define $g: \Omega^{*} \rightarrow \mathbb{C}$ by

$$
g(z)=\overline{f(\bar{z})}
$$

Show that g is holomorphic with

$$
g^{\prime}(z)=\overline{f^{\prime}(\bar{z})}
$$

4. Let $\Omega \subset \mathbb{C}$ be open and $f: \Omega \rightarrow \mathbb{C}$ be holomorphic with $\operatorname{Re} f$ constant. Prove that f is a constant function.
5. Determine the radius of convergence of the power series $\sum_{n=1}^{\infty} a_{n} z^{n}$ when
(a) $a_{n}=n^{2}$
(b) $a_{n}=n$!
(c) $a_{n}=(n!)^{3} /(3 n)$!

Hint: Use Stirling's formula, which says that

$$
n!\sim \sqrt{2 \pi n}\left(\frac{n}{\mathrm{e}}\right)^{n}
$$

as $n \rightarrow \infty$.

