Complex Analysis

Homework 2

Due in class Wednesday, September 29, 2021

1. Let γ be a piecewise smooth curve in \mathbb{C} and let $f: \mathbb{C} \to \mathbb{C}$ be continuous. Show that

$$\int_{\gamma} f(z) \, \mathrm{d}z = -\int_{\gamma^{-}} f(z) \, \mathrm{d}z$$

where γ^- denotes the curve γ with reversed orientation.

2. Let γ be piecewise smooth simple closed curve in \mathbb{C} encircling the origin. Compute

$$\int_{\gamma} z^n \, \mathrm{d}z$$

for every $n \in \mathbb{Z}$.

3. Show that

$$\int_0^\infty \sin(x^2) \, \mathrm{d}x = \int_0^\infty \cos(x^2) \, \mathrm{d}x = \frac{\sqrt{2\pi}}{4} \, .$$

Hint: Integrate e^{-z^2} along the sector of the disk of radius R centered at the origin that lies in the first octant of the complex plane, then let $R \to \infty$. (This is Chapter 2, Exercise 1 from Stein & Shakarchi who have a sketch of this contour in the book.)

4. Show that

$$\int_0^\infty \frac{\sin x}{x} \, \mathrm{d}x = \frac{\pi}{2}$$

Hint: Integrate along the indented semicircle contour as in the example from class (or Stein & Shakarchi, Chapter 2, Exercise 2).

5. Let $\Omega \subset \mathbb{C}$ be open. Let f be holomorphic on Ω except perhaps at a single point w. Show that if f is bounded near w, then

$$\int_{\gamma} f(z) \, \mathrm{d}z = 0$$

for any closed piecewise smooth curve $\gamma \subset \Omega$.