# Complex Analysis 

Homework 5

Due in class Thursday, October 21, 2021

1. (Stein \& Shakarchi, Chapter 3 Exercise 7.) Prove that, for $a>1$,

$$
\int_{0}^{2 \pi} \frac{1}{(a+\cos \theta)^{2}} \mathrm{~d} \theta=2 \pi \frac{a}{\left(a^{2}-1\right)^{3 / 2}}
$$

Hint: Recognize this expression as a parameterization of a line integral in the complex plane, then use the residue theorem.
2. (Stein \& Shakarchi, Chapter 3 Exercise 9.) Show that

$$
\int_{0}^{1} \log (\sin \pi x) \mathrm{d} x=-\log 2 .
$$

Hint: Integrate along the contour $\gamma=\mathrm{i}(\infty, 0]) \cup[0,1] \cup 1+\mathrm{i}[0, \infty)$.
3. (Stein \& Shakarchi, Chapter 3 Exercise 10.) Show that, for $a>0$,

$$
\int_{0}^{\infty} \frac{\log x}{a^{2}+x^{2}} \mathrm{~d} x=\frac{\pi}{2 a} \log a
$$

Hint: Integrate along the contour bounded by the semicircle in the upper halfplane of radius $r$, the semicircle in the upper halfplane of radius $R$, both centered at the origin, plus the line segments along the real axis connecting the two semicircles. Then let $r \rightarrow 0$ and $R \rightarrow \infty$.
4. (Stein \& Shakarchi, Chapter 3 Exercise 13.) Suppose $f$ is holomorphic in a punctured disc $D_{r}\left(z_{0}\right) \backslash\left\{z_{0}\right\}$ and that

$$
|f(z)| \leq A\left|z-z_{0}\right|^{\varepsilon-1}
$$

for some $\varepsilon>0$ and $A>0$ and all $z$ near $z_{0}$. Show that the singularity of $f$ at $z_{0}$ is removable.

