Complex Analysis

Homework 7

Due in class Thursday, November 11, 2021

1. (Cf. Stein & Shakarchi, Chapter 2 Exercise 12.)

Suppose that $u: \mathbb{D} \to \mathbb{R}$ is harmonic, i.e., u is twice continuously differentiable as a function of two real variables and satisfies

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0.$$

Show that there exists a holomorphic function f on \mathbb{D} such that $u = \operatorname{Re} f$ and $\operatorname{Im} f$ is uniquely defined up on an additive real constant.

Hint: Show that if f = u + iv were holomorphic, then $f'(z) = 2 \partial u / \partial z$. Thus, if you can show that $\partial u / \partial z$ is holomorphic, then you can recover f via its primitive (explain in detail!).

2. (Stein & Shakarchi, Chapter 8 Exercise 1.) A holomorphic mapping $f: U \to V$ is a local bijection on U if for every $z \in U$ there exists an open disc $D \subset U$ centered at z, so that $f: D \to f(D)$ is a bijection. Prove that a holomorphic map $f: U \to V$ is a local bijection on U if and only if f'(z) = 0 for all $z \in U$.

Hint: Modify the Rouché theorem argument shown in class.

3. (Stein & Shakarchi, Chapter 8 Exercise 2.) Suppose f(z) is holomorphic near z = 0and f(0) = f'(0) = 0, while $f''(0) \neq 0$. Show that there are two curves γ_1 and γ_2 that pass through the origin, are orthogonal at the origin, and so that f restricted to γ_1 is real and has a minimum at 0, while f restricted to γ_2 is also real but has a maximum at 0.

Hint: Write $f(z) = (g(z))^2$ for z near 0, and consider the mapping $z \mapsto g(z)$ and its inverse.

4. (Stein & Shakarchi, Chapter 8 Exercise 5.) Prove that f(z) = -1/2 (z + 1/z) is a conformal map from the half-disc {z = x + iy: |z| < 1, y > 0} to the upper half-plane. *Hint:* The equation f(z) = w reduces to the quadratic equation z² + 2wz + 1 = 0, which has two distinct roots in C whenever w = ±1. This is certainly the case if w ∈ H.