Complex Analysis

Homework 7

Due in class Thursday, November 11, 2021

1. (Cf. Stein \& Shakarchi, Chapter 2 Exercise 12.)

Suppose that $u: \mathbb{D} \rightarrow \mathbb{R}$ is harmonic, i.e., u is twice continuously differentiable as a function of two real variables and satisfies

$$
\Delta u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 .
$$

Show that there exists a holomorphic function f on \mathbb{D} such that $u=\operatorname{Re} f$ and $\operatorname{Im} f$ is uniquely defined up on an additive real constant.
Hint: Show that if $f=u+\mathrm{i} v$ were holomorphic, then $f^{\prime}(z)=2 \partial u / \partial z$. Thus, if you can show that $\partial u / \partial z$ is holomorphic, then you can recover f via its primitive (explain in detail!).
2. (Stein \& Shakarchi, Chapter 8 Exercise 1.) A holomorphic mapping $f: U \rightarrow V$ is a local bijection on U if for every $z \in U$ there exists an open disc $D \subset U$ centered at z, so that $f: D \rightarrow f(D)$ is a bijection. Prove that a holomorphic map $f: U \rightarrow V$ is a local bijection on U if and only if $f^{\prime}(z)=0$ for all $z \in U$.

Hint: Modify the Rouché theorem argument shown in class.
3. (Stein \& Shakarchi, Chapter 8 Exercise 2.) Supppose $f(z)$ is holomorphic near $z=0$ and $f(0)=f^{\prime}(0)=0$, while $f^{\prime \prime}(0) \neq 0$. Show that there are two curves γ_{1} and γ_{2} that pass through the origin, are orthogonal at the origin, and so that f restricted to γ_{1} is real and has a minimum at 0 , while f restricted to γ_{2} is also real but has a maximum at 0 .

Hint: Write $f(z)=(g(z))^{2}$ for z near 0 , and consider the mapping $z \mapsto g(z)$ and its inverse.
4. (Stein \& Shakarchi, Chapter 8 Exercise 5.) Prove that $f(z)=-\frac{1}{2}(z+1 / z)$ is a conformal map from the half-disc $\{z=x+\mathrm{i} y:|z|<1, y>0\}$ to the upper half-plane.
Hint: The equation $f(z)=w$ reduces to the quadratic equation $z^{2}+2 w z+1=0$, which has two distinct roots in \mathbb{C} whenever $w= \pm 1$. This is certainly the case if $w \in \mathbb{H}$.

