Complex Analysis

Homework 8

Due in class Thursday, November 18, 2021

1. Recall from class that f is an automorphism of the unit disc \mathbb{D} if and only if there exist $\theta \in \mathbb{R}$ and $\alpha \in \mathbb{D}$ such that

$$
f(z)=\mathrm{e}^{\mathrm{i} \theta} \frac{\alpha-z}{1-\bar{\alpha} z}
$$

Pulling back this automorphism of the disc to the upper half plane via

$$
\psi=F^{-1} \circ f \circ F
$$

where $F: \mathbb{H} \rightarrow \mathbb{D}$ is the conformal map

$$
F(z)=\frac{\mathrm{i}-z}{\mathrm{i}+z}, \quad F^{-1}(w)=\mathrm{i} \frac{1-w}{1+w}
$$

show that

$$
\psi(z)=\frac{a z+b}{c z+d}
$$

where a, b, c, d are real and satisfy $a d-b c=1$.
Hint: The computations are tedious, you may want to use a computer algebra system. Alternatively, look at the hints in Stein \& Shakarchi, Chapter 8, Exercise 16 which provide a structured way of doing this argument by hand.
2. Show that the exponential $f(z)=\mathrm{e}^{z}$ is a conformal map from the strip

$$
\Omega=\{0<\operatorname{Im} z<b\}
$$

to a sector

$$
S=\{0<\arg z<b\}
$$

provided $0<b<2 \pi$.
3. Show that the Joukowski map

$$
f(z)=\frac{1}{2}\left(z+\frac{1}{z}\right)
$$

is a conformal map from the exterior of the unit disk $\{z:|z|>1\}$ to the exterior of the segment of the real axis $[-1,1]$.
4. (Stein \& Shakarchi, Chapter 8 Exercise 11.) Show that if $f: D_{R}(0) \rightarrow \mathbb{C}$ is holomorphic, with $|f(z)| \leq M$ for some $M>0$, then

$$
\left|\frac{f(z)-f(0)}{M^{2}-\overline{f(0)} f(z)}\right| \leq \frac{|z|}{M R}
$$

Hint: Use the Schwarz lemma.

