Complex Analysis

Homework 9

Due in class Thursday, November 25, 2021

- 1. (Stein & Shakarchi, Chapter 8 Exercise 12.) A complex number $w \in \mathbb{D}$ is a fixed point for the map $f: \mathbb{D} \to \mathbb{D}$ if f(w) = w.
 - (a) Prove that if f: D → D is holomorphic and has two distinct fixed points, then f is the identity. *Hint:* Consider the function g = ψ_w ∘ f ∘ ψ_w where w is one of the fixed points and ψ_w is the automorphism of the disc that exchanges 0 and w.
 - (b) Must every holomorphic function $f: \mathbb{D} \to \mathbb{D}$ have a fixed point? *Hint:* Consider the upper half-plane.
- 2. We say that a power series with coefficients a_n is *asymptotic* to a function $f : \mathbb{R} \to \mathbb{R}$, written

$$f(x) \sim \sum_{n=0}^{\infty} a_n x^n \,,$$

if, for every $N \in \mathbb{N}$,

$$f(x) - \sum_{n=0}^{N} a_n x^n = O(x^{N+1})$$
 as $x \searrow 0$. (*)

Notes: An asymptotic series may not be convergent. The concept carries over to functions on \mathbb{C} ; in that case, the validity of an asymptotic expansions is typically restricted to a sector of the complex plane.

(a) Show that

$$\frac{1}{1-x} \sim \sum_{n=0}^{\infty} x^n \quad \text{as } x \searrow 0$$

and

$$\frac{1}{1-x} + e^{-1/x} \sin(e^{1/x}) \sim \sum_{n=0}^{\infty} x^n$$
 as $x \searrow 0$.

In other words, an asymptotic series does not uniquely characterize a function.

- (b) Demonstrate that term-by-term differentiation of the asymptotic series, in the second case, does not yield an asymptotic series for the derivative of the left-hand function.
- 3. Let

$$I(s) = \int_0^b e^{-sx} f(x) \, \mathrm{d}x$$

where b > 0 and $f: [0,1] \to \mathbb{R}$ is continuous and has an asymptotic expansion of the form (*). Prove that

$$I(s) \sim \sum_{n=0}^{\infty} a_n \Gamma(n+1) s^{-n-1}$$
 as $s \to \infty$.

(This is a simplified version of what is known as Watson's lemma.)