Functional Analysis

Final Exam

May 20, 2009

- 1. (a) Let E be a Banach space with closed subspace $G \subsetneq E$. Show that G is nowhere dense in E.
 - (b) Let V be a vector space with a countably infinite (algebraic) basis B, i.e. every x ∈ V can be represented as a finite linear linear combination of elements from V. Show that E cannot be complete with respect to any norm.
- 2. Let E be a Banach space and $A \in \mathcal{L}(E)$. Show that $\sigma(A)$ is compact.
- 3. Let H be a Hilbert space and A a linear, closed, densely defined, skew-adjoint (i.e. $A^* = -A$), unbounded operator on H. Show that
 - (a) $\sigma(A) \subset i\mathbb{R};$
 - (b) A has no residual spectrum.
- 4. Let $H = \ell^2(\mathbb{N})$ and define an operator A via $Ae_n = n^{-1}e_n$ for $n \in \mathbb{N}$, where $\{e_n\}$ is the canonical basis in ℓ^2 . Further, let L be the left shift operator on ℓ^2 , i.e. $L(a_1, a_2, a_3, \dots) = (a_2, a_3, \dots)$.
 - (a) Show that LA is compact.
 - (b) What is $\sigma(LA)$?
- 5. Let E, F be Banach spaces and A: $\mathcal{D}(A) \subset E \to F$ be a linear, closed, densely defined, and invertible unbounded operator. Show that A^{*} is invertible with inverse $(A^{-1})^*$.
- 6. Consider $A = \partial_x$ on $L^2([0, 1])$ with

$$\mathcal{D}(\mathsf{A}) = \{ \mathsf{u} \in \mathsf{L}^2 \colon \mathfrak{d}_{\mathsf{x}} \mathsf{u} \in \mathsf{L}^2([0,1]), \mathsf{u}(\mathsf{0}) = \mathsf{0} \}.$$

(a) Show that $A^* = -\partial_x$ with

$$\mathcal{D}(A^*) = \{ u \in L^2 : \partial_x u \in L^2([0,1]), u(1) = 0 \}.$$

(b) Describe the point, continuous, and residual spectrum.