Functional Analysis

Homework 2

due February 20, 2009 (submit by 17:00 in Research I, Room 40)

- 1. (From Folland, p. 124.) Let X and Y be topological spaces.
 - (a) If X is connected (see Homework 1) and $f \in C(X, Y)$, then f(X) is connected.
 - (b) X is called *pathwise connected* (or *arcwise connected*) if for all $x_0, x_1 \in X$ there exists $f \in C([0, 1], X)$ with $f(0) = x_0$ and $f(1) = x_1$. Show that every pathwise connected space is connected.
 - (c) Let $X = \{(s,t) \in \mathbb{R}^2 : t = \sin(1/s)\} \cup \{(0,0)\}$, with the relative topology induced from \mathbb{R}^2 . Then X is connected, but not pathwise connected.
- 2. (From Folland, p. 138.) If $\{X_{\alpha}\}_{\alpha \in A}$ is a family of topological spaces of which infinitely many are noncompact, then every closed compact subset of $\prod_{\alpha \in A} X_{\alpha}$ is nowhere dense. (Recall that a subset S of a topological space is called *nowhere dense* if $\operatorname{int}(\overline{S}) = \emptyset$.)
- 3. (From Folland, p. 138.) Let $K \in C([0,1]^2)$. For $f \in C([0,1])$, let

$$Tf(x) = \int_0^1 K(x, y) f(y) \,\mathrm{d}y \,.$$

Then $Tf \in C([0, 1])$, and

$$\{Tf\colon \|f\|_u\leq 1\}$$

is precompact in C([0, 1]).

(A subset S of a topological space is called *precompact* (or *relatively compact*) if its closure is compact.)

4. (From Folland, p. 138.) Let (X, ρ) be a metric space. A function $f \in C(X)$ is called Hölder continuous of exponent $\alpha > 0$ if the quantity

$$N_{\alpha}(f) = \sup_{x \neq y} \frac{|f(x) - f(y)|}{\rho(x, y)^{\alpha}}$$

is finite. If X is compact, prove that

$$\{f \in C(X) \colon ||f||_u \le 1 \text{ and } N_\alpha(f) \le 1\}$$

is compact in C(X).