Functional Analysis

Homework 6

due April 1, 2009

- 1. Let E, F be Banach spaces and $A: \mathcal{D}(A) \subset E \to F$ an unbounded operator. Show that the following are equivalent.
 - (a) A is closeable. (I.e., A has a closed extension.)
 - (b) $\Gamma(A)$ is the graph of a closed operator \overline{A} , the smallest closed extension of A.
 - (c) $(0, v) \in \Gamma(A)$ implies that v = 0.
- 2. Let *E* be a Banach space and *A*, *B* operators from *E* into itself with domains $\mathcal{D}(A)$ and $\mathcal{D}(B)$.
 - (a) What is $\mathcal{D}(AB)$?
 - (b) Show that A closed and B bounded implies AB closed.
 - (c) Show that A bounded and B closed does not imply that AB is closed.
- 3. Consider ∂_r as an unbounded operator on $L^2((0,\infty), r^2 dr)$ with domain

$$\mathcal{D}(\partial_r) = \{ u \in L^2((0,\infty), r^2 \,\mathrm{d}r) \colon u \in AC((0,\infty)), \partial_r u \in L^2((0,\infty), r^2 \,\mathrm{d}r) \}$$

- (a) Show that $r^{1/2} u(r) \to 0$ as $r \to \infty$ for every $u \in \mathcal{D}(\partial_r)$.
- (b) Compute the adjoint of ∂_r and its domain.
- 4. Consider ∂_x acting on $L^2(\mathbb{T})$ with

$$\mathcal{D}(\partial_x) = \{ u \in L^2(\mathbb{T}) \colon u \in AC(\mathbb{T}), \partial_x u \in L^2(\mathbb{T}) \}.$$

- (a) Show that $\partial_x^* = -\partial_x$ on $\mathcal{D}(\partial_x)$ and that $\mathcal{D}(\partial_x^*) \supset \mathcal{D}(\partial_x)$.
- (b) Find Range (∂_x) and Ker (∂_x) , then conclude that $\mathcal{D}(\partial_x^*) = \mathcal{D}(\partial_x)$.