Functional Analysis

Homework 9

May 28, 2009

1. Let E, F be Banach spaces and let $A: \mathcal{D}(A) \subset E \rightarrow F$ be a linear, closed, densely defined, unbounded operator.
Show that A is invertible if and only if
(i) There exists $\alpha>0$ such that for all $u \in \mathcal{D}(A)$

$$
\|A u\|_{F} \geq \alpha\|u\|_{E}
$$

(ii) Range A is dense in F.

Then, moreover, $\left\|A^{-1}\right\|_{\mathcal{L}(F, E)} \leq \frac{1}{\alpha}$.
2. Let $H=\ell^{2}(\mathbb{N})$.
(a) Show that the operator defined via $A e_{n}=n^{-1} e_{n}$ for $n \in \mathbb{N}$, where $\left\{e_{n}\right\}$ is the canonical basis in ℓ^{2}, is compact.
(b) What is $\sigma(A)$?
(c) Let R be the right shift operator on ℓ^{2}, i.e. $R\left(a_{1}, a_{2}, \ldots\right)=\left(0, a_{1}, a_{2}, \ldots\right)$. What is $\sigma(R A)$?
3. (a) Let E, F be Banach spaces and $A: \mathcal{D}(A) \subset E \rightarrow F$ be a linear, closed, densely defined, and invertible unbounded operator. Show that if $B \in \mathcal{L}(E, F)$ such that $\left\|A^{-1} B\right\|_{\mathcal{L}(E)}<1$, then $A+B$ is invertible with

$$
(A+B)^{-1}=\left(I+A^{-1} B\right)^{-1} A^{-1} .
$$

Note: Use Neumann series. We sketched the proof in class.
(b) Now take $F=E$. Use part (a) to show that the resolvent map

$$
\lambda \mapsto(A-\lambda I)^{-1}
$$

is a continuous map from $\rho(A) \subset \mathbb{C} \rightarrow \mathcal{L}(E)$.
(c) Show further that the resolvent map is differentiable (hence analytic) on $\rho(A)$. Hint: Note that

$$
\frac{(A-\lambda I)^{-1}\left(A-\lambda_{0} I\right)^{-1}}{\lambda-\lambda_{0}}=\left(A-\lambda_{0} I\right)^{-1}(A-\lambda I)^{-1} .
$$

(Why?)
4. Let E, F be Banach spaces and

$$
\begin{gathered}
A: \mathcal{D}(A) \subset E \rightarrow F \\
A^{\dagger}: \mathcal{D}\left(A^{\dagger}\right) \subset F^{*} \rightarrow E^{*}
\end{gathered}
$$

be two linear, closed, densely defined, unbounded operators such that

$$
\langle f, A u\rangle_{F^{*}, F}=\left\langle A^{\dagger} f, u\right\rangle_{E^{*}, E}
$$

for all $f \in \mathcal{D}\left(A^{\dagger}\right)$ and $u \in \mathcal{D}(A)$.
Now suppose there exist

$$
\begin{aligned}
G: F & \rightarrow \mathcal{D}(A) \subset E \\
G^{\dagger}: E^{*} & \rightarrow \mathcal{D}\left(A^{\dagger}\right) \subset F^{*}
\end{aligned}
$$

such that

$$
\begin{equation*}
A G=I_{F} \quad \text { and } \quad A^{\dagger} G^{\dagger}=I_{E^{*}} \tag{*}
\end{equation*}
$$

Then $A^{\dagger}=A^{*}$.
Hint: The issue here is whether $\mathcal{D}\left(A^{\dagger}\right)=\mathcal{D}\left(A^{*}\right)$. Note that $f \in \mathcal{D}\left(A^{*}\right)$ if and only if there exists $g \in E^{*}$ such that

$$
\langle f, A u\rangle_{F^{*}, F}=\langle g, u\rangle_{E^{*}, E} .
$$

Note: The above criterion is useful because, on the one hand, $\mathcal{D}\left(A^{*}\right)$ is often difficult to establish directly. On the other hand, the "formal adjoint" A^{\dagger} and the respective inverses can often be obtained by explicit computation. So the proof that the "natural domain" of the formal adjoint, $\mathcal{D}\left(A^{\dagger}\right)$, already exhausts all of $\mathcal{D}\left(A^{*}\right)$ reduces to the verification of the two identities $\left(^{*}\right)$. See next question.
5. Consider $A=-\partial_{x x}$ on $L^{2}([0,1])$.
(a) Show that A is self-adjoint with

$$
\mathcal{D}(A)=\left\{u \in L^{2}([0,1]): \partial_{x x} u \in L^{2}([0,1]), u(0)=u(1)=0\right\} .
$$

(b) Show that A is symmetric (L^{*} is an extension of L), but not self-adjoint with

$$
\mathcal{D}(A)=\left\{u \in L^{2}([0,1]): \partial_{x x} u \in L^{2}([0,1]), u(0)=\partial_{x} u(0)=u(1)=\partial_{x} u(1)=0\right\} .
$$

Describe the point, continuous, and residual spectrum in each case.

