Functional Analysis

Homework 9

May 28, 2009

1. Let E, F be Banach spaces and let $A: \mathcal{D}(A) \subset E \to F$ be a linear, closed, densely defined, unbounded operator.

Show that A is invertible if and only if

(i) There exists $\alpha > 0$ such that for all $u \in \mathcal{D}(A)$

$$||Au||_F \ge \alpha \, ||u||_E \, .$$

(ii) Range A is dense in F.

Then, moreover, $||A^{-1}||_{\mathcal{L}(F,E)} \leq \frac{1}{\alpha}$.

- 2. Let $H = \ell^2(\mathbb{N})$.
 - (a) Show that the operator defined via $Ae_n = n^{-1}e_n$ for $n \in \mathbb{N}$, where $\{e_n\}$ is the canonical basis in ℓ^2 , is compact.
 - (b) What is $\sigma(A)$?
 - (c) Let R be the right shift operator on ℓ^2 , i.e. $R(a_1, a_2, ...) = (0, a_1, a_2, ...)$. What is $\sigma(RA)$?
- 3. (a) Let E, F be Banach spaces and $A: \mathcal{D}(A) \subset E \to F$ be a linear, closed, densely defined, and invertible unbounded operator. Show that if $B \in \mathcal{L}(E, F)$ such that $\|A^{-1}B\|_{\mathcal{L}(E)} < 1$, then A + B is invertible with

$$(A+B)^{-1} = (I+A^{-1}B)^{-1}A^{-1}.$$

Note: Use Neumann series. We sketched the proof in class.

(b) Now take F = E. Use part (a) to show that the resolvent map

$$\lambda \mapsto (A - \lambda I)^{-1}$$

is a continuous map from $\rho(A) \subset \mathbb{C} \to \mathcal{L}(E)$.

(c) Show further that the resolvent map is differentiable (hence analytic) on $\rho(A)$. *Hint:* Note that

$$\frac{(A - \lambda I)^{-1} (A - \lambda_0 I)^{-1}}{\lambda - \lambda_0} = (A - \lambda_0 I)^{-1} (A - \lambda I)^{-1}.$$

(Why?)

4. Let E, F be Banach spaces and

$$A: \mathcal{D}(A) \subset E \to F,$$

$$A^{\dagger}: \mathcal{D}(A^{\dagger}) \subset F^* \to E^*$$

be two linear, closed, densely defined, unbounded operators such that

$$\langle f, Au \rangle_{F^*,F} = \langle A^{\dagger}f, u \rangle_{E^*,E}$$

for all $f \in \mathcal{D}(A^{\dagger})$ and $u \in \mathcal{D}(A)$.

Now suppose there exist

$$G \colon F \to \mathcal{D}(A) \subset E \,,$$

$$G^{\dagger} \colon E^* \to \mathcal{D}(A^{\dagger}) \subset F^*$$

such that

$$AG = I_F$$
 and $A^{\dagger}G^{\dagger} = I_{E^*}$. (*)

Then $A^{\dagger} = A^*$.

Hint: The issue here is whether $\mathcal{D}(A^{\dagger}) = \mathcal{D}(A^*)$. Note that $f \in \mathcal{D}(A^*)$ if and only if there exists $g \in E^*$ such that

$$\langle f, Au \rangle_{F^*,F} = \langle g, u \rangle_{E^*,E}$$
.

Note: The above criterion is useful because, on the one hand, $\mathcal{D}(A^*)$ is often difficult to establish directly. On the other hand, the "formal adjoint" A^{\dagger} and the respective inverses can often be obtained by explicit computation. So the proof that the "natural domain" of the formal adjoint, $\mathcal{D}(A^{\dagger})$, already exhausts all of $\mathcal{D}(A^*)$ reduces to the verification of the two identities (*). See next question.

- 5. Consider $A = -\partial_{xx}$ on $L^2([0,1])$.
 - (a) Show that A is self-adjoint with

$$\mathcal{D}(A) = \{ u \in L^2([0,1]) \colon \partial_{xx} u \in L^2([0,1]), u(0) = u(1) = 0 \}$$

(b) Show that A is symmetric (L^* is an extension of L), but not self-adjoint with

$$\mathcal{D}(A) = \{ u \in L^2([0,1]) \colon \partial_{xx} u \in L^2([0,1]), u(0) = \partial_x u(0) = u(1) = \partial_x u(1) = 0 \}.$$

Describe the point, continuous, and residual spectrum in each case.