Perspectives of Mathematics II

Quiz 1

March 1, 2010

Each problem is worth 5 points.

1. Let $\mathcal{V}=\mathbb{R}^{2}$ and let A be the non-symmetric matrix

$$
A=\left(\begin{array}{cc}
\frac{1}{2} & 1 \\
0 & \frac{1}{2}
\end{array}\right) .
$$

Find the maxima and minima of

$$
f(\boldsymbol{v})=\boldsymbol{v}^{T} A \boldsymbol{v}
$$

subject to $\|\boldsymbol{v}\|=1$.
2. Let $\mathcal{V}=\left\{u \in C^{2}([-1,1]): u(-1)=u(1)=0\right\}$. Find the minimum of

$$
f(u)=\int_{-1}^{1} u^{\prime}(x)^{2} \mathrm{~d} x
$$

on \mathcal{V} subject to the constraint $g(u)=0$ with

$$
g(u)=\int_{-1}^{1} u(x) \mathrm{d} x-2 .
$$

3. You have a set of experimentally obtained data points $\left(x_{1}, y_{1}\right), \ldots\left(x_{n}, y_{n}\right)$ of the plane and suspect that they might be related by a power law of the type

$$
y=c x^{\alpha} .
$$

How would you analyze this data and obtain the exponent α ?
(Note: a qualitative description is sufficient.)

