Stochastic Processes

Homework 1

Due in class Thursday, February 25

Each problem is worth 5 points.

- 1. Show that any open subset of \mathbb{R} is a countable union of open intervals.
- 2. Show that
 - (a) all one-point sets $\{x\}$ with $x \in \mathbb{R}$
 - (b) \mathbb{Q}

belong to $\mathcal{B}(\mathbb{R})$, the Borel σ -field on \mathbb{R} .

- 3. Let $\Omega = [0, 1]$ and $A \subsetneq \Omega$ nonempty. What is the σ -field \mathcal{F} generated by $\{A\}$? What are the \mathcal{F} -measurable functions?
- 4. Let (Ω, \mathcal{F}, P) be a probability space and $\xi \colon \Omega \to \mathbb{R}$ a random variable which is nonnegative a.e., in other words, $P\{x \in \Omega \colon \xi(x) < 0\} = 0$. Show that

$$\int_{\Omega} \xi \, \mathrm{d}P \ge 0 \, .$$

5. Let $\Omega = [0, 1]$, $\mathcal{F} = \mathcal{B}(\mathbb{R})$, and P the Lebesgue measure. Give an example of a sequence of nonnegative Borel functions $\{f_n\}_{n \in \mathbb{N}}$ defined on [0, 1] such that

$$\int_{\Omega} f_n \,\mathrm{d}P \to 0\,,$$

but $f_n \rightarrow 0$ on a set of positive measure.