Stochastic Processes

Homework 2

Due in class Thursday, March 4

1. Let (Ω, \mathcal{F}, P) be a probability space and let $\{A_i\}_{i \in I}$ a partition of Ω into pairwise disjoint measurable sets. Prove *Bayes' Theorem*, namely that

$$P(A_i|B) = \frac{P(B|A_i) P(A_i)}{\sum_{j \in I} P(B|A_j) P(A_j)}$$

for every $i \in I$ and $B \in \mathcal{F}$.

- Let (Ω, F, P) be a probability space and let ξ and η be independent random variables. Let f, g: R → R be Borel functions. Show that f(ξ) and g(η) are independent. (Recall that f is a Borel function if f⁻¹(B) is a Borel set for every Borel set B.)
- 3. Let (Ω, \mathcal{F}, P) be a probability space, ξ a random variable, and η a discrete random variable taking values $\{y_i\}_{i \in I}$ where I is at most countable. Show that

$$E(\xi) = \sum_{i \in I} E(\xi | \eta^{-1}\{y_i\}) P \eta^{-1}\{y_i\}.$$

- 4. Two dice are tossed. What is the conditional expectation $E(\xi|\eta)$ of the total amount ξ shown given η , the absolute value of the difference of the amounts shown?
- 5. Let $\Omega = [-1/2, 1/2]$ with the Lebesgue measure. Find the conditional expectation $E(\xi|\eta)$ if

$$\xi(x) = x, \qquad \eta(x) = x^2.$$