General Mathematics and ACM II

Exercise 7

February 25, 2011

1. Use the matrix form of the equation for a reflection (see handout) to show that the composition of reflections about parallel lines is a translation $\Pi_{\boldsymbol{v}}$. Find an expression for the translation vector \boldsymbol{v}.
2. Let G be a group and let $a, b \in G$. Show that $(a b)^{-1}=b^{-1} a^{-1}$.
3. Let G be a finite group (i.e., a group with a finite number of elements), and let $a \in G$. Show that there exists some $n \in \mathbb{N}$ such that $a^{n}=e$. (Where a^{n} is understood as letting the group operation act between n copies of a.)
4. (If not submitted on Friday.)
(Ivanov, p. 39.) Recall that the symmetry group of a subset A of the plane is defined as

$$
\operatorname{Sym}(A)=\{F \text { motion : } F(A)=A\} .
$$

Prove that such a set of motions is indeed a group.

