General Mathematics and ACM II

Exercise 16

April 8, 2011

This exercise sheet is due Friday, April 29, 2011.

1. Find all solutions for the underdetermined linear system $A\boldsymbol{x} = \boldsymbol{b}$, where

	(2)	2	1	0 \			$\left(-1\right)$	
A =	1	1	1	1	and	b =	1	
	1	1	0	-1	and		-2	•
	$\sqrt{3}$	3	2	1 /			\	/

2. Consider a linear programming problem with n variables in standard form. Explain why a non-negative solution to $m \leq n$ equality constraints in which at least n - m variables are zero represents a vertex of the feasible region.

Hint: Recall how the general solution to an underdetermined system of linear equations looks like, cf. Question 1.

3. Write the following linear programming problem in its standard form. Maximize

$$z = 2x_1 - x_2 + x_3$$

subject to

$$x_{1} - x_{2} \leq 1,$$

$$x_{2} - x_{3} \geq 1,$$

$$x_{3} - x_{1} \leq 3,$$

$$x_{1} \geq -2,$$

$$x_{2} \leq 1,$$

$$x_{3} \leq 0.$$

4. Solve the linear programming problem from Question 3 using the simplex method.

5. Solve the following linear programming problem using the simplex method. Maximize

 $z = 3x_1 + 4x_2$

subject to

$$2x_1 + x_2 \le 4$$
,
 $3x_1 + 2x_2 \le 8$,
 $x_i \ge 0$ for $i = 1, 2$.