General Mathematics and ACM II

Exercise 17

April 29, 2011

- 1. Show that the leaving variable in one iteration of the simplex method can never be the entering variable in the next iteration.
- 2. The *primal* form of a linear programming problem is

minimize
$$\boldsymbol{c}^T \boldsymbol{x}$$

subject to $A\boldsymbol{x} = \boldsymbol{b}, \boldsymbol{x} \ge 0$. (P)

The corresponding dual problem reads

$$\begin{array}{l} \text{maximize } \boldsymbol{y}^T \boldsymbol{b} \\ \text{subject to } \boldsymbol{y}^T \boldsymbol{A} \leq \boldsymbol{c}^T \,. \end{array} \tag{D}$$

Here, A is an $m \times n$ matrix, $\boldsymbol{x}, \boldsymbol{c} \in \mathbb{R}^n$, and $\boldsymbol{y}, \boldsymbol{b} \in \mathbb{R}^m$. Show that if \boldsymbol{x} solves (P) and \boldsymbol{y} solves (D), then

$$oldsymbol{y}^Toldsymbol{b}\leqoldsymbol{c}^Toldsymbol{x}$$
 .

Conclude that the primal problem does not have a finite minimum if and only if the feasible region of the dual problem is empty.

3. In the notation of the previous question, show that if \boldsymbol{x} is feasible for problem (P) and \boldsymbol{y} is feasible for problem (D), and if furthermore

$$\boldsymbol{y}^T \boldsymbol{b} = \boldsymbol{c}^T \boldsymbol{x}$$

then \boldsymbol{x} solves (P) and \boldsymbol{y} solves (D).