General Mathematics and ACM II

Exercise 18

May 4, 2011

1. Let

$$
v(x)=\sum_{k=-\infty}^{\infty} \hat{v}_{k} \mathrm{e}^{\mathrm{i} k x}
$$

Show that

$$
\hat{v}_{k}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \mathrm{e}^{-\mathrm{i} k x} v(x) \mathrm{d} x
$$

(You may assume you can freely exchange summation and integration, and that all sums converge.)
2. Handout, Exercise 1.

