General Mathematics and ACM II

Final Exam

May 21, 2011

1. Show that in a finite graph without cycles, there is a vertex of valency at most one.
2. Let ℓ be a fixed line in the plane. Recall that a glide reflection with axis ℓ is a transformation $U=R_{\ell} \Pi$ where R_{ℓ} is the line reflection about ℓ and Π is some nonidentity translation which leaves ℓ invariant.
(a) Show that $R_{\ell} \Pi=\Pi R_{\ell}$.
(b) Show that $U^{-1}=R_{\ell} \Pi^{-1}$.
(c) Show that U^{-1} is a glide reflection with axis ℓ.
(d) Consider the set of all glide reflections with axis ℓ. Is it a group? If not, describe the group it generates.

$$
(5+5+5+5)
$$

3. Fix $N \in \mathbb{N}$. The i th circular shift matrix is the $N \times N$ matrix

$$
S_{i}=\left(\begin{array}{cccccccc}
& & \cdots & 0 & 1 & 0 & \cdots & 0 \\
& & & & \ddots & \ddots & \ddots & \vdots \\
\vdots & & & & & 0 & 1 & 0 \\
0 & & & & & & 0 & 1 \\
1 & 0 & & & & & & \vdots \\
0 & 1 & 0 & & & & & \\
\vdots & \ddots & \ddots & \ddots & & & & \\
0 & \cdots & 0 & 1 & 0 & \cdots & &
\end{array}\right)
$$

where the leftmost 1 appears in the i th row.

Further, let M denote the diagonal matrix

$$
M=\left(\begin{array}{ccccc}
m_{1} & 0 & & & \\
0 & m_{2} & \ddots & & \\
& \ddots & \ddots & \ddots & \\
& & \ddots & \ddots & 0 \\
& & & 0 & m_{N}
\end{array}\right)
$$

where $\left|m_{1}\right|=\cdots=\left|m_{N}\right|=1$.
(a) Under which condition on the values m_{1}, \ldots, m_{N} does $S_{i} M=M S_{i}$ hold for every $i=1, \ldots, N$?
(b) Show that $\left\{\left(S_{2} M\right)^{i}: i \in \mathbb{Z}\right\}$ is a group. What is its order (the number of elements)?
(c) There is a correspondence of this construction with the Kac ring model. Explain!
(d) There is a correspondence of this construction with glide reflections. Explain!

$$
(5+5+5+5)
$$

4. Solve the linear programming problem

$$
\operatorname{minimize} z=x+3 y
$$

subject to

$$
\begin{gather*}
x+2 y \geq 2 \\
2 x+y \geq 2 \\
x \geq 0 \\
y \geq 0 \tag{10}
\end{gather*}
$$

using either the graphical method or the simplex method.
5. The linear programming problem

$$
\begin{gather*}
\text { maximize } \boldsymbol{c}^{T} \boldsymbol{x} \\
\text { subject to } A \boldsymbol{x} \leq \boldsymbol{b}, \boldsymbol{x} \geq \mathbf{0} \tag{P}
\end{gather*}
$$

has a corresponding symmetric dual problem

$$
\begin{gather*}
\text { minimize } \boldsymbol{b}^{T} \boldsymbol{y} \\
\text { subject to } A^{T} \boldsymbol{y} \geq \boldsymbol{c}, \boldsymbol{y} \geq \mathbf{0} \tag{D}
\end{gather*}
$$

Suppose that \boldsymbol{x} is feasible for (P) and \boldsymbol{y} is feasible for (D).
(a) Show that $\boldsymbol{c}^{T} \boldsymbol{x} \leq \boldsymbol{b}^{T} \boldsymbol{y}$.
(b) Conclude that if $\boldsymbol{c}^{T} \boldsymbol{x}=\boldsymbol{b}^{T} \boldsymbol{y}$, then \boldsymbol{x} and \boldsymbol{y} are optimal for their respective linear programming problems.
6. Recall that for $v \in \mathbb{C}^{N}$, the discrete Fourier transform of v is defined

$$
\hat{v}_{k}=\frac{1}{N} \sum_{j=0}^{N-1} \mathrm{e}^{-\mathrm{i} j k h} v_{j}
$$

with $h=2 \pi / N$ and for $k=0, \ldots, N-1$.
(a) Set $w_{j}=\mathrm{e}^{\mathrm{i} j m h} v_{j}$ for $j=1, \ldots, N$. Express the discrete Fourier transform of w in terms of the discrete Fourier transform of v.
(b) Let $v \in \mathbb{R}^{N}$ be a vector of real numbers. Show that its discrete Fourier transform satisfies

$$
\overline{\hat{v}_{k}}=\hat{v}_{N-k},
$$

where the overbar denotes the complex conjugate.

