Introduction to Partial Differential Equations

Final Exam

May 25, 2011

1. (a) Solve the partial differential equation

$$
\begin{aligned}
& t u_{t}+x u_{x}=0, \\
& u(x, 1)=g(x),
\end{aligned}
$$

where $u=u(x, t)$ using the method of characteristics for $t \geq 1$.
(b) Draw the characteristic curves. Discuss how you could solve the equation in the exterior of the unit disk.
2. Suppose u is a radial solution of the Helmholtz equation

$$
u-\Delta u=0 \quad \text { in } \mathbb{R}^{n}
$$

Set $u(x)=v(r)$ with $r=|x|$. Show that v must satisfy the modified Bessel equation

$$
\begin{equation*}
v-(n-1) \frac{v^{\prime}}{r}-v^{\prime \prime}=0 \tag{10}
\end{equation*}
$$

(Do not attempt to solve it.)
3. Let $U \subset \mathbb{R}^{n}$ be open, bounded, and connected. Let $u: U \rightarrow \mathbb{R}$ be a nonnegative harmonic function. Show that if $u(x)=0$ for some $x \in U$, then $u=0$ everywhere in U.
4. Show that if the initial datum to the heat equation is even, the solution will be even for any fixed $t \geq 0$.
5. Suppose $u=u(x, t)$ is a smooth function on $\mathbb{R} \times[0, \infty)$ with compact support in the x-direction for every fixed $t \geq 0$. Suppose further that u solves Burgers' equation

$$
u_{t}+F(u)_{x}=0 \quad \text { with } \quad F(u)=\frac{1}{2} u^{2} .
$$

(a) Show that

$$
M(t)=\int_{\mathbb{R}} u(x, t) d x \quad \text { and } \quad E(t)=\int_{\mathbb{R}} u(x, t)^{2} d x
$$

are constants of the motion.
(b) Show that

$$
\int_{0}^{\infty} \int_{\mathbb{R}}\left(u v_{t}+F(u) v_{x}\right) d x d t+\int_{\mathbb{R}} u(x, 0) v(x, 0) d x=0
$$

for every $v \in C^{1}(\mathbb{R} \times[0, \infty))$ with compact support.
6. Note: This problem continues Question 5 which should be attempted beforehand.

Suppose that u is an integral solution of Burgers' equation (i.e., it satisfies the condition stated in 5 b) which is smooth everywhere except on a curve C. Suppose further that C has a smooth parametrization of the form $(s(t), t)$. Let u_{l} denote the left-hand limit of u on C and let u_{r} denote the right-hand limit of u on C.
(a) Show that, on C,

$$
[[F(u)]]=\dot{s}[[u]]
$$

where $[[F(u)]]=F\left(u_{l}\right)-F\left(u_{r}\right)$ and $[[u]]=u_{l}-u_{r}$ denote the jump in $F(u)$ and the jump in u across C, respectively.
Hint: Use the divergence theorem.
(b) Show that $M(t)$ is a constant of the motion.

Hint: Use the divergence theorem on V_{l} and V_{r} separately and notice that the contribution on C cancels.

(c) Suppose u satisfies the entropy condition

$$
u(x+h, t)-u(x, t) \leq \frac{c}{t} h
$$

for some constant $c>0$. Show that this implies $u_{l} \geq u_{r}$.
(d) Show that, when u satisfies the entropy condition, $E(t)$ is a decreasing function of time.
Hint: Show that in the interior of V_{l} and V_{r},

$$
\frac{1}{2} \partial_{t} u^{2}+\frac{1}{3} \partial_{x} u^{3}=0 .
$$

Now use the divergence theorem as in (b) and discuss the sign of the contribution on C.
(e) Give a physical interpretation of (d) vs. (b).

