Introduction to Partial Differential Equations

Midterm Exam

April 12, 2011

1. (a) Solve the partial differential equation

$$
u_{t}+t u_{x}=0,
$$

where $u=u(x, t)$ using the method of characteristics.
(b) Draw the characteristic curves, then state a set of boundary and/or initial conditions that specify the solution uniquely in the first quadrant of the (x, t) plane.
2. (a) Show that

$$
\Delta u=2 n \lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon^{2}} f_{\partial B(x, \varepsilon)}(u(y)-u(x)) d S(y) .
$$

(b) Let

$$
U^{+}=\left\{x \in \mathbb{R}^{n}: 0<x_{1}<1,\left|x_{2}\right|<1, \ldots,\left|x_{n}\right|<1\right.
$$

with $n \geq 2$ denote an open half-cube. Suppose $u \in C\left(\bar{U}^{+}\right)$is harmonic in U^{+} with $u\left(0, x_{2}, \ldots, x_{n}\right)=0$ for $\left|x_{2}\right| \leq 1, \ldots,\left|x_{n}\right| \leq 1$.
Show, by referring to the result from part (a) or otherwise, that

$$
v(x)= \begin{cases}u(x) & \text { for } x_{1} \geq 0 \\ -u\left(-x_{1}, x_{2}, \ldots, x_{n}\right) & \text { for } x_{1}<0\end{cases}
$$

is harmonic in the open cube $\left|x_{1}\right|<1, \ldots,\left|x_{n}\right|<1$.
3. Recall that the solution to the heat equation

$$
\begin{gathered}
u_{t}-\Delta u=0 \quad \text { in } \mathbb{R}^{n} \times(0, \infty), \\
u=g \quad \text { on } \mathbb{R}^{n} \times\{t=0\}
\end{gathered}
$$

is given by

$$
u(x, t)=\int_{\mathbb{R}^{n}} \Phi(x-y, t) g(y) d y
$$

where, for $t>0$,

$$
\Phi(z, t)=\frac{1}{(4 \pi t)^{n / 2}} e^{-\frac{|z|^{2}}{4 t}}
$$

Suppose that $g \in L^{1}\left(\mathbb{R}^{n}\right)$.
(a) Show that $\|u\|_{L^{\infty}} \rightarrow 0$ as $t \rightarrow \infty$.
(b) Show that, for all $t \geq 0$,

$$
\int_{\mathbb{R}^{n}} u(x, t) d x=\text { const } .
$$

(c) Give a physical interpretation of (a) vs. (b).
4. Consider the wave equation

$$
\begin{gathered}
u_{t t}-u_{x x}=0 \quad \text { in } \mathbb{R} \times(0, \infty), \\
u=g \quad \text { on } \mathbb{R} \times\{t=0\}, \\
u_{t}=h \\
\text { on } \mathbb{R} \times\{t=0\}
\end{gathered}
$$

for $g \in C^{2}$ and $h \in C^{1}$. Derive d'Alembert's solution formula

$$
u(x, t)=\frac{g(x+t)+g(x-t)}{2}+\frac{1}{2} \int_{x-t}^{x+t} h(y) d y
$$

Note: A constructive derivation is required for full credit.
Hint: Factorize the wave equation as $\left(\partial_{t}+\partial_{x}\right)\left(\partial_{t}-\partial_{x}\right) u=0$.
5. (a) Let $u \in C_{1}^{3}(\mathbb{R} \times[0, \infty))$ solve the Airy equation

$$
\begin{aligned}
u_{t}+u_{x x x}=0 & \text { in } \mathbb{R} \times(0, \infty) \\
u(x, 0)=g(x) & \text { on } \mathbb{R} \times\{t=0\}
\end{aligned}
$$

and suppose that $u, u_{x} \rightarrow 0$ as $x \rightarrow \pm \infty$.
Prove that u is the unique solution in this class.
Hint: Energy methods.
(b) Extend your uniqueness proof to the Korteweg-de Vries equation

$$
\begin{gather*}
u_{t}+u u_{x}+u_{x x x}=0 \quad \text { in } \mathbb{R} \times(0, \infty) \\
u(x, 0)=g(x) \quad \text { on } \mathbb{R} \times\{t=0\} \tag{5+5}
\end{gather*}
$$

