General Mathematics and CPS II

Exercise 3

February 10, 2012

1. Let G be a finite connected planar graph with V its set of vertices, E its set of edges, and F its set of faces.
(a) Show that $2|E| \geq 3|F|$.
(b) Show that $|E| \leq 3|V|-6$.
(c) Conclude that every planar graph must have at least one vertex of valency less than 6.
2. A standard deck of cards is dealt into 13 piles of 4 cards each. Show that you can always choose exactly one card from each of the 13 piles as to obtain exactly one card of each rank, i.e., each of $2,3,4, \ldots$, King, Ace.
3. Ivanov, p. 99, Problem 13.
(This problem will be discussed in class on Wednesday again, so you may choose to hand it in on Friday.)
