General Mathematics and CPS II

Exercise 7

February 24, 2012

1. Use the matrix form of the equation for a reflection (see handout) to show that the composition of reflections about parallel lines is a translation $\Pi_{\boldsymbol{v}}$. Find an expression for the translation vector \boldsymbol{v}.
2. Let G be a group and let $a, b \in G$. Show that $(a b)^{-1}=b^{-1} a^{-1}$.
3. (Ivanov, p. 39.) Recall that the symmetry group of a subset A of the plane is defined as

$$
\operatorname{Sym}(A)=\{F \text { motion: } F(A)=A\} .
$$

Prove that such a set of motions is indeed a group.

