# General Mathematics and CPS II 

Exercise 9

March 2, 2012

1. Let $G$ be a group, and let $H$ and $K$ be subgroups of $G$. Show that $H \cap K$ is also a subgroup of $G$.
2. Prove Ivanov p. 40, Lemma 4. I.e., show that the symmetry group of an ornament may contain, apart from the cyclic subgroup of translations $\langle\Pi\rangle$, only the following:
(a) A line reflection $R_{\|}$about the axis of the ornament.
(b) Line reflections about axes perpendicular to the ornament.
(c) Point reflections about points on the axis of the ornament.
(d) At most one glide reflection about the axis of the ornament, which is a composition of a translation and a line reflection about the axis of the ornament.
3. (Ivanov, p. 41, Exercise.) Let $R_{\alpha}$ denote the reflection about the line $x=\alpha$. Let $G$ be the (symmetry) group generated by the unit translation along the $x$-axis and by $R_{0}$. Show that $R_{\alpha} \in G$ if and only if $2 \alpha \in \mathbb{Z}$.
