General Mathematics and CPS II

Exercise 10

March 7, 2012

Note: This exercise is due March 21, 2012. This material will not be appear on the midterm exam.

1. Newton's second law of mechanics for a particle of mass m situated at position $x(t)$ moving with velocity $v(t)$ and subject to a force $F(x(t))$ can be written

$$
\begin{gathered}
\frac{\mathrm{d} x}{\mathrm{~d} t}=v \\
m \frac{\mathrm{~d} v}{\mathrm{~d} t}=F(x(t))
\end{gathered}
$$

Use the chain rule of calculus to show that the particle satisfies the same equation with t replaced by the reversed time $r=-t$ and v replaced by $-v$.
2. Show that in a time-discrete, reversible, system with a finite number of states any orbit must return to its initial state after a finite number of steps.
3. In the Kac ring model, N sites are placed around a circle. The sites are populated with B black balls and $W=N-B$ white balls at random. Moreover, n markers are placed on the edges between the sites at random; the number of black balls just before a marked edge is denoted b, the number of white balls just before a marked edge is w.
Let μ denote the probability that an edge has a marker on it. Explain why

$$
\mu=\frac{n}{N}=\frac{b}{B}=\frac{w}{W} .
$$

4. Show that

$$
\sum_{k=0}^{n}\binom{n}{k} k x^{k} y^{n-k}=n x(x+y)^{n-1}
$$

and

$$
\sum_{k=0}^{n}\binom{n}{k} k^{2} x^{k} y^{n-k}=n x(x+y)^{n-1}+n(n-1) x^{2}(x+y)^{n-2}
$$

Hint: Differentiate the binomial theorem.

