General Mathematics and CPS II

Exercise 19

May 2, 2012

1. Handout, Exercise 3.
2. Suppose a smooth periodic function $u:[0,2 \pi) \rightarrow \mathbb{C}$ is sampled at the N equidistant points $x_{j}=j h$ with $h=2 \pi / N$ and $j=0, \ldots, N-1$. We set $u_{j}=u\left(x_{j}\right)$, take the discrete Fourier transform

$$
\tilde{u}_{k}=\sum_{j=0}^{N-1} \mathrm{e}^{-\mathrm{i} k x_{j}} u_{j},
$$

and define the reconstruction of u via

$$
v(x)=\sum_{k=-N / 2}^{N / 2-1} \mathrm{e}^{\mathrm{i} k x} \tilde{u}_{k}
$$

Show that

$$
\hat{v}_{k}= \begin{cases}\tilde{u}_{k} & \text { for } k \in-N / 2, \ldots, N / 2-1 \\ 0 & \text { otherwise }\end{cases}
$$

