General Mathematics and CPS II

Exercise 20

May 4, 2012

1. Solve the difference equation

$$
\begin{gathered}
t_{n}=2 t_{n-1}+2^{n+1}, \\
t_{1}=0 .
\end{gathered}
$$

2. Let $u:[0,2 \pi] \rightarrow \mathbb{R}$ be defined via the Fourier series

$$
u(x)=\sum_{k \in \mathbb{Z}} \hat{u}_{k} \mathrm{e}^{\mathrm{i} k x} .
$$

Show that its derivative $w(x)=u^{\prime}(x)$, assuming it exists, has Fourier coefficients

$$
\begin{equation*}
\hat{w}_{k}=\mathrm{i} k \hat{u}_{k} . \tag{}
\end{equation*}
$$

3. The previous question suggests a way to differentiate a function $u:[0,2 \pi] \rightarrow \mathbb{R}$ numerically: First, sample u on the equidistant grid $x_{j}=j h$ with $h=2 \pi / N$. Second, compute the Fourier coefficients of its trigonometric interpolant v as described in Section 3 of the handout. Third, use (${ }^{*}$) on the Fourier coefficients \hat{v}_{k}. Finally, take the inverse DFT to obtain the derivative sampled on the grid.
A practical difficulty lies in the convention that standard FFT software libraries take the indexing convention $j=0, \ldots, N-1$ and $k=0, \ldots, N-1$. In particular, the input and output data arrays are arranged in precisely this order. Trigonometric interpolation, on the other hand, requires that $k=-N / 2, \ldots, N / 2-1$. With which factor, then, must the i th element, with respect to the order imposed by the software, of the vector $\hat{\boldsymbol{v}}$ be multiplied so that differentiation is computed correctly?
