General Mathematics and Computational Science II

Final Exam

May 25, 2012

1. Can you draw a path in the plane which crosses each edge of the following graph exactly once and crosses none of the vertices (marked as dots)?

2. Let ℓ denote the line through the origin in the direction of unit vector \boldsymbol{u}. Show that the reflection of a point with coordinates \boldsymbol{p} about ℓ is given by

$$
\begin{equation*}
R_{\ell}(\boldsymbol{p})=2 \boldsymbol{u} \boldsymbol{u}^{T} \boldsymbol{p}-\boldsymbol{p} \tag{10}
\end{equation*}
$$

3. (a) Show that symmetric group S_{3}, the group of permutations of a three-element set, and the dihedral group D_{3}, the group of symmetries of an equilateral triangle, are isomorphic.
(b) Are S_{4} and D_{4} isomorphic?
(The symmetric group S_{4} denotes the group of permutations of a four-element set and the dihedral group D_{4} denotes the group of symmetries of a square.)
4. Consider the linear programming problem of minimizing

$$
z=-3 x-2 y
$$

subject to

$$
\begin{gathered}
x+3 y \leq 15 \\
4 x+y \leq 16 \\
x, y \geq 0
\end{gathered}
$$

(a) Solve this problem using the simplex method.
(b) Write out the dual problem and solve the dual problem using the graphical method.
(c) State the relation you expect between (a) and (b) and verify that your solution meets your expectation.
5. Assume that $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$ are two solutions to the linear programming problem in standard form,

$$
\begin{gathered}
\operatorname{minimize} \boldsymbol{c}^{T} \boldsymbol{x} \\
\text { subject to } A \boldsymbol{x}=\boldsymbol{b} \\
\text { and } \boldsymbol{x} \geq \mathbf{0} .
\end{gathered}
$$

Show that any convex combination $\boldsymbol{z}=t \boldsymbol{x}+(1-t) \boldsymbol{y}$ for $t \in[0,1]$ is also a solution.
6. Recall the definition of the discrete Fourier transform of the N-tuple of complex numbers v_{0}, \ldots, v_{N-1},

$$
\tilde{v}_{k}=\frac{1}{N} \sum_{j=0}^{N-1} \mathrm{e}^{-\mathrm{i} j k h} v_{j}
$$

with $h=2 \pi / N$ for $k=0, \ldots, N-1$.
Compute the discrete Fourier transform when N is even and

$$
v_{j}= \begin{cases}1 & \text { for } j<N / 2 \\ 0 & \text { otherwise }\end{cases}
$$

Hint: The case $k=0$ is special, but if you think of your expression for \hat{v}_{k} as being defined for arbitrary $k \in \mathbb{R}$, you should find that $\lim _{k \rightarrow 0} \hat{v}_{k}=\hat{v}_{0}$. (There is no need to compute this, but you may want to use it as a consistency check.)
7. For a nonnegative integer a of at most N decimal digits, let a_{0}, \ldots, a_{N-1} denote its decimal digits, so that

$$
a=\sum_{i=0}^{N-1} a_{i} 10^{i}
$$

likewise for nonnegative integers b and c.
(a) Suppose that $c=a \cdot b$, write out an expression for c_{i} in terms of a_{i} and b_{i}, where $i=0, \ldots, N-1$.
(b) Given your answer to (a), how can you use the Fast Fourier Transform to speed up the multiplication of large integers?
(c) How should N be chosen such that your proposed algorithm from part (b) computes a product of integers correctly?

