General Mathematics and Computational Science II

Midterm Exam

March 14, 2012

1. Show that the complete graph with 5 vertices cannot be embedded in the plane. (10)
2. Show that a finite graph is bipartite if and only if it does not contain a cycle of odd length.
(Recall that a graph is bipartite if its vertex set can be partitioned into two disjoint subsets V_{1} and V_{2} such that every edge has one vertex in V_{1} and the other vertex in V_{2}.)
3. (a) Given three concentric circles, how can you construct an equilateral triangle with one vertex on each of the circles?
(b) Give a necessary and sufficient condition for the existence of such an equilateral triangle.

4. Consider a transformation of the plane written in vector form as

$$
F(\boldsymbol{v})=\mathrm{M} \boldsymbol{v} \quad \text { where } \quad \mathrm{M}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) .
$$

(a) Show that F is a motion of the plane (i.e., preserves lengths) if and only if

$$
\begin{aligned}
& a^{2}+c^{2}=1 \\
& b^{2}+d^{2}=1 \\
& a b+c d=0
\end{aligned}
$$

(b) What is the geometric significance of these conditions when you consider the vectors

$$
\begin{equation*}
\boldsymbol{u}=\binom{a}{c} \quad \text { and } \quad \boldsymbol{w}=\binom{b}{d} ? \tag{5+5}
\end{equation*}
$$

5. When G is a group, the cyclic group generated by some $a \in G$ is called a group cycle. Now construct a graph whose vertices are the elements of G. Insert an edge whenever two of the group elements are adjacent in one of the group cycles (ordered naturally). This graph is known as the cycle graph. ${ }^{1}$
(a) Prove that the cycle graph of a finite group is connected.
(b) Draw the cycle graph for the dihedral group

$$
\begin{equation*}
D_{3}=\left\{\langle a, b\rangle: a^{3}=e, b^{2}=e, a b=b a^{-1}\right\} . \tag{5+5}
\end{equation*}
$$

6. Suppose the symmetry group G of an ornament contains H_{0}, the point reflection about the origin, and the glide reflection U, chosen such that U^{2} is the translation by one unit along the x-axis.
Show that G must contain point reflections about all points $(n / 2,0)$ with $n \in \mathbb{Z}$ and line reflections about all lines $x=1 / 4+n / 2$ with $n \in \mathbb{Z}$.
[^0]
[^0]: ${ }^{1}$ The usual definition restricts to primitive cycles, those which do not appear as a subset of another cycle, but this shall not matter here.

