Nonlinear Dynamics Lab

Session 7 and 8

due March 4, 2013

1. Consider the equation for the mathematical pendulum

$$
\begin{aligned}
\dot{q} & =p \\
\dot{p} & =-\sin q .
\end{aligned}
$$

Write a program that solves the mathematical pendulum with
(a) the explicit Euler method,
(b) the implicit Euler method,
(c) the implicit midpoint method.

Take initial values $q(0)=0$ and $p(0)=1.9$ and plot example solutions $q(t)$ vs. t for each method into one graph for a time horizon of many oscillation periods.
2. Use your program from Exercise 1 to plot the solution trajectories in the $q-p$ phase plane and overlay it with a contour plot of the energy

$$
E=\frac{1}{2} p^{2}-\cos q .
$$

3. Read up on the build-in ODE solvers in scipy.integrate.ode. Obtain a reference solution for the mathematical pendulum using one of these integrators for a fixed final time, e.g. $T=10$, and determine the order of the previously implemented methods by plotting the error (the difference of the result of your solver vs. that of the built-in reference solver) vs. the step size on a doubly logarithmic scale.
4. Solve the van der Pol equation

$$
\begin{aligned}
& \dot{x}=y \\
& \dot{y}=\mu\left(1-x^{2}\right) y-x
\end{aligned}
$$

for $\mu=1000$ with different built-in solvers. Be sure to involve at least one explicit solver and one implicit one.
You should submit by the deadline the runable code for each problem as well as a written description of your observations as well as a discussion of these observations for Exercises $1 / 2$ (together) and 4.

