Engineering and Science Mathematics 2B

Final Exam

May 23, 2013

1. Let

$$
A=\left(\begin{array}{lll}
2 & 0 & 2 \tag{10}\\
3 & 2 & 7 \\
2 & 1 & 4
\end{array}\right)
$$

Find a basis for $\operatorname{Ker} A$ and Range A.
2. Let P_{2} denote the vector space of polynomials up to degree 2 endowed with inner product

$$
\langle p, q\rangle=\frac{1}{2} \int_{-1}^{1} p(x) q(x) \mathrm{d} x
$$

and basis $B=\left\{1, x, x^{2}\right\}$.
(a) Find an orthogonal basis $E=\left\{e_{1}, e_{2}, e_{3}\right\}$ for P_{2}.

Note: To simplify computations, have a careful look at which vectors in B are already orthogonal. Normalization is not required.
(b) Find the matrix S representing the change of basis from E to B and compute S^{-1}.
(c) Define a linear map $L: V \rightarrow V$ by

$$
(L p)(x)=x p^{\prime}(x) .
$$

Find the matrix representation of L with respect to the basis B.
(d) Find the matrix representation of L with respect to the basis E.
3. (E) Let W be a nonempty proper subspace of \mathbb{R}^{n} and let P be the orthogonal projector onto W. What are the eigenvalues of P ? (Explain!)
(A) Let V be the vector space of continuous functions on \mathbb{R}. Define a linear operator M by

$$
(M f)(x)=m(x) f(x)
$$

where $m \in V$ is fixed. Under which conditions on m does M have eigenvalues? How are these eigenvalues characterized?
4. Given a 2π-periodic function with complex Fourier coefficients c_{k}, set $g(x)=f(x+a)$. Show that g has complex Fourier coefficients $\mathrm{e}^{\mathrm{i} k a} c_{k}$.
5. Compute

$$
\begin{equation*}
\int_{-\infty}^{\infty} x^{2} \delta\left(x^{3}\right) \mathrm{d} x \tag{10}
\end{equation*}
$$

6. Consider the following communication network:

Assume the links between stations A, B, and C may fail independently of each other with failure probabilities $P(A C)=\frac{1}{2}, P(A B)=\frac{1}{3}$, and $P(B C)=\frac{1}{4}$, respectively.
(a) What is the probability that there is a path in the network from station A to C ?
(b) You are probing the network by sending a signal from station A and find that you receive the signal at station C. What is the probability that the direct link $A C$ is working?
7. The exponential distribution with parameter $\lambda>0$ is a continuous probability distribution with probability distribution function

$$
f(x)= \begin{cases}\lambda \mathrm{e}^{-\lambda x} & \text { for } x \geq 0 \\ 0 & \text { for } x<0\end{cases}
$$

(a) Show that f is indeed a probability distribution function by checking that it is properly normalized.
(b) Derive its moment generating function $M(t)=E\left[\mathrm{e}^{t X}\right]$.
(c) Find its mean and variance.
8. There are two types of students. Students of type A report sick only when they are actually sick. Students of type B report sick with probability 1 whenever there is an exam. It is known that the sickness rate of the general working population is 5%. On every exam, 10% of students report sick.
(a) What is the probability that a randomly selected student is of type B ?
(b) (E) What is the probability that a student who reports sick on the day of the exam is of type B ?
(A) A student reports sick on the midterm and on the final. What is the probability that the student is of type B ?
9. Let X_{1}, \ldots, X_{N} be identically and independently distributed random variables with $E\left[X_{i}\right]=\mu$ and $\operatorname{Var}\left[X_{i}\right]=\sigma^{2}$.
(E) Show that

$$
\begin{equation*}
E\left[\sum_{i=1}^{N} \frac{X_{i}}{N}\right]=\mu \quad \text { and } \quad E\left[\sum_{i=1}^{N} \frac{\left(X_{i}-\mu\right)^{2}}{N}\right]=\sigma^{2} \tag{8}
\end{equation*}
$$

(A) Define the sample mean

$$
\mu_{\text {sample }}=\sum_{i=1}^{N} \frac{X_{i}}{N}
$$

and the sample variance

$$
\begin{equation*}
\sigma_{\text {sample }}^{2}=\sum_{i=1}^{N} \frac{\left(X_{i}-\mu_{\text {sample }}\right)^{2}}{N-1} \tag{10}
\end{equation*}
$$

Show that $E\left[\sigma_{\text {sample }}^{2}\right]=\sigma^{2}$.

