Engineering and Science Mathematics 2B

Midterm I

March 6, 2013

For questions with an easy (E) and an advanced (A) version, choose either the easy or the advanced version, not both. You may make a different choice for each question.

1. (E) Let $A \in M(n \times n)$ be a regular matrix and suppose that λ is an eigenvalue of A. Show that $1 / \lambda$ is an eigenvalue of A^{-1}.
(A) Let $A \in M(n \times n)$ be diagonalizable with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ (not necessarily distinct) and $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}$ corresponding linearly independent eigenvectors. How can you choose, given this information, a basis for Range A ? Explain why your method works.
2. Let $A=\left(\begin{array}{cc}0 & 3 \\ -3 & 0\end{array}\right)$.
(a) Find the eigenvalues and eigenvectors of A.
(b) Write out a diagonal matrix D and an invertible matrix S such that $D=S^{-1} A S$.
(c) Check your result by explicitly performing the matrix multiplications $S D$ and $A S$.
3. Let $\boldsymbol{v}=(1,1,-1)^{T}$.
(E) Find the distance of the point $\boldsymbol{p}=(0,1,0)^{T}$ to the line through the origin in the direction of \boldsymbol{v}.
(A) Find the matrix representation in the standard basis of the projection onto the plane through the origin which is normal to \boldsymbol{v}.
4. Find the general solution to the system of linear equations $A \boldsymbol{x}=\boldsymbol{b}$ with
(E)

$$
A=\left(\begin{array}{cccc}
1 & 7 & 4 & 4 \tag{16}\\
0 & 6 & 3 & 3 \\
1 & 1 & 1 & 1
\end{array}\right), \quad \boldsymbol{b}=\left(\begin{array}{c}
-5 \\
-6 \\
1
\end{array}\right)
$$

(A)

$$
A=\left(\begin{array}{ccc}
0 & 1+3 i & 3-i \tag{20}\\
-1 & -1+5 i & 2-i \\
i & 2+2 i & i
\end{array}\right), \quad \boldsymbol{b}=\left(\begin{array}{c}
10 \\
7 \\
3 i
\end{array}\right)
$$

Check your answer! (Required for full credit.)
5. Let V be the set of symmetric 2×2 real matrices.
(a) Show that V is a vector space with the usual matrix addition and scalar multiplication.
(b) Find a basis B for the vector space V. (Keep it simple, do not use a basis containing the matrices I, E, S from below!)
(c) Show that $B^{\prime}=\{I, E, S\}$ where I is the identity matrix,

$$
E=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right), \quad \text { and } \quad S=\left(\begin{array}{cc}
0 & 1 \\
1 & -1
\end{array}\right)
$$

is another basis V. Compute the change of coordinate matrices $I_{B^{\prime}, B}$ and $I_{B, B^{\prime}}$.
(d) Show that for any fixed $C \in M(2 \times 2)$ the map F defined by $F(A)=C A C^{T}$ is a linear map on V.
(e) Let

$$
C=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

Give the matrix which represents F with respect to a basis of your choice.

$$
(5+5+10+5+5)
$$

6. (E) Consider the matrix

$$
A=\left(\begin{array}{ll}
0 & 0 \tag{8}\\
7 & 0
\end{array}\right)
$$

Show that $\operatorname{Ker} A=$ Range A.
(A) Let $A, B \in M(n \times n)$ with $\operatorname{Ker} A \cap \operatorname{Range} B=\{0\}$. Show that $\operatorname{dim} \operatorname{Ker} A B=$ $\operatorname{dim} \operatorname{Ker} B$.

