Engineering and Science Mathematics 2B

Review for Midterm I

March 6, 2013, 08:15-9:30

1. Equations for lines and planes; distance of a point to a line or plane; distance between two lines. See, in particular, the examples on pp. 230-233.
2. Complex Numbers: Know how to do arithmetic with complex numbers; polar representation of complex numbers.
3. Solve a system of linear equations: See handout. Practice problem:

$$
A=\left(\begin{array}{ccccc}
1 & 2 & 5 & 1 & 0 \\
-1 & -1 & -4 & 1 & 1 \\
0 & -1 & -1 & -1 & 0 \\
1 & 2 & 5 & 0 & -1
\end{array}\right), \quad \boldsymbol{b}=\left(\begin{array}{c}
0 \\
1 \\
0 \\
-1
\end{array}\right)
$$

(a) Solve $A \boldsymbol{x}=\boldsymbol{b}$.
(b) Characterize all vectors \boldsymbol{b} for which the equation has a solution.
(c) Find a basis for the kernel of A.
(d) Find a basis for the range of A.
4. Concept of vector space, linear independence, basis.
5. Matrix inversion: see handout and examples from homework.
6. Linear transformations: Definition, representation by a matrix, change of basis. Practice problem:
Let

$$
\boldsymbol{v}_{1}=\left(\begin{array}{c}
2 \\
-2 \\
-1
\end{array}\right), \quad \boldsymbol{v}_{2}=\left(\begin{array}{c}
2 \\
1 \\
-2
\end{array}\right), \quad \boldsymbol{v}_{3}=\left(\begin{array}{c}
3 \\
-1 \\
-2
\end{array}\right)
$$

and

$$
\boldsymbol{w}_{1}=\left(\begin{array}{l}
-1 \\
-1 \\
-1
\end{array}\right), \quad \boldsymbol{w}_{2}=\left(\begin{array}{c}
0 \\
3 \\
-2
\end{array}\right), \quad \boldsymbol{w}_{3}=\left(\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right)
$$

be two bases in \mathbb{R}^{3}.
(a) Write the vector $\boldsymbol{u}=(2,3,5)^{T}$ in the basis $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}$.
(b) Find the change of basis matrix from the basis $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}$ to the basis $\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \boldsymbol{w}_{3}\right\}$.
(c) Let $\boldsymbol{a}=4 \boldsymbol{v}_{1}-2 \boldsymbol{v}_{2}+\boldsymbol{v}_{3}$; find its coordinates in the basis $\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \boldsymbol{w}_{3}\right\}$.
(d) Let the linear transformation F be the reflection about the plane spanned by the standard unit vectors \boldsymbol{e}_{1} and \boldsymbol{e}_{2}; find the matrix representing F in the standard basis and in the basis $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}$.
(e) Compute $F(\boldsymbol{a})$ in the basis $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}$.
(f) Let $\boldsymbol{b}=\boldsymbol{w}_{1}+2 \boldsymbol{w}_{2}+3 \boldsymbol{w}_{3}$; find the coordinates of $F(\boldsymbol{b})$ in the basis $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}$.
7. Determinants. See, for example, p. 307 question 8.2.
8. Eigenvalues and eigenvectors. Practice problem: Diagonalize the matrix

$$
B=\left(\begin{array}{ccc}
0 & -i & i \\
i & 0 & -i \\
-i & i & 0
\end{array}\right)
$$

9. Test your understanding: Are the following statements true or false? If false, give a short argument.
(a) If A is an $n \times k$ matrix with $n>k$, then its columns are linearly independent.
(b) If A is an $n \times k$ matrix with $n<k$, then its columns are linearly dependent.
(c) $A \boldsymbol{x}=\boldsymbol{b}$ has infinitely many solutions if the nullspace of A is nontrivial.
(d) Suppose that A is invertible. Then A^{T} is also invertible and its inverse is the transpose of A^{-1}.
(e) There exists such a 3×3 matrix A that Range $A=\operatorname{Ker} A$
(f) The set of orthogonal 3×3 matrices forms a vectorspace with the usual matrix addition and scalar multiplication. (Recall that a matrix is orthogonal if $A^{T}=$ A^{-1}.)
(g) The projection onto the plane $x+3 y-2 z=1$ in \mathbb{R}^{3} is a linear transformation.
(h) Two eigenvectors of a matrix A are always linearly independent.
(i) Every square matrix is diagonalizable.
(j) Every regular square matrix is diagonalizable
(k) Every hermitian matrix is diagonalizable.
