Engineering and Science Mathematics 2B

Homework 2

due February 20, 2013, before 12:00

Normal questions and advanced questions (A) are worth 5 points; easy questions (E) are worth 4 points. Complete either the easy, or the advanced version, not both.

1. A matrix A is called normal if $A A^{H}=A^{H} A$, where A^{H} denotes the Hermitian conjugate of A. Show (a) that $\left(A^{H}\right)^{-1}=\left(A^{-1}\right)^{H}$, and (b) that A^{-1} is normal if A is normal.
2. Let

$$
B=\left(\begin{array}{ccc}
0 & -\mathrm{i} & \mathrm{i} \\
\mathrm{i} & 0 & -\mathrm{i} \\
-\mathrm{i} & \mathrm{i} & 0
\end{array}\right), \quad C=\frac{1}{\sqrt{8}}\left(\begin{array}{ccc}
\sqrt{3} & -\sqrt{2} & -\sqrt{3} \\
1 & \sqrt{6} & -1 \\
2 & 0 & 2
\end{array}\right) .
$$

Are these matrices real, diagonal, symmetric, antisymmetric, singular, orthogonal, Hermitian, anti-Hermitian, unitary, and/or normal? (Recall that a matrix is normal if $A A^{H}=A^{H} A$.)
3. (E) Let

$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad B=\left(\begin{array}{ll}
0 & 0 \\
3 & 4
\end{array}\right)
$$

Compute $A B$ and $B A$. Conclude that (i) $A B \neq B A$, and (ii) that $A B=0$ does not imply that either A or B is the zero matrix.
(A) Prove that $A B=0$ implies that at least one of the matrices is singular.
4. (E) Determine if the following set of vectors is linearly dependent or linearly independent:

$$
\left(\begin{array}{c}
-4 \\
0 \\
1 \\
5
\end{array}\right), \quad\left(\begin{array}{c}
-3 \\
-1 \\
0 \\
4
\end{array}\right), \quad\left(\begin{array}{l}
0 \\
4 \\
3 \\
6
\end{array}\right)
$$

(A) Prove the following statement: Let $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}$ be linearly independent. If a vector \boldsymbol{w} can be written

$$
\boldsymbol{w}=\sum_{k=1}^{n} \alpha_{k} \boldsymbol{v}_{k}
$$

the choice of the coefficients $\alpha_{1}, \ldots, \alpha_{n}$ is unique.
5. Solve the following system of linear equations using the method taught in class.

$$
\begin{aligned}
x_{1}+3 x_{2}-5 x_{3} & =4 \\
x_{1}+4 x_{2}-8 x_{3} & =7 \\
-3 x_{1}-7 x_{2}+9 x_{3} & =-6
\end{aligned}
$$

6. (E) Solve the following system of linear equations using the method taught in class.

$$
\begin{aligned}
x_{1}+3 x_{2}+x_{3} & =1 \\
-4 x_{1}-9 x_{2}+2 x_{3} & =-1 \\
-3 x_{2}-6 x_{3} & =-3
\end{aligned}
$$

(A) Find conditions on α such that following system of linear equations has (a) exactly one solution, (b) no solutions, or (c) an infinite number of solutions; give all solutions where they exist.

$$
\begin{aligned}
x_{1}+\alpha x_{2} & =1 \\
x_{1}-x_{2}+3 x_{3} & =-1 \\
2 x_{1}-2 x_{2}+\alpha x_{3} & =-2
\end{aligned}
$$

