Engineering and Science Mathematics 2B

Homework 3

due February 27, 2013, before 12:00

Normal questions and advanced questions (A) are worth 5 points; easy questions (E) are worth 4 points. Complete either the easy, or the advanced version, not both.

- 1. Determine if the following are vector spaces. If not, explain which property fails.
 - (a) The polynomials of degree smaller or equal to n, with the usual addition and multiplication by a scalar.
 - (b) The polynomials of degree n, with the usual addition and multiplication by a scalar.
 - (c) The set of $n \times m$ matrices with the usual addition and multiplication by a scalar.
 - (d) The set of $n \times m$ matrices with matrix multiplication taking the role of vector addition, scalar multiplication being as usual.
 - (e) The set of symmetric $n \times n$ matrices with the usual addition and multiplication by a scalar.
 - (f) The set of invertible $n \times n$ matrices with the usual addition and multiplication by a scalar.
 - (g) Complex numbers form a vector space over the reals of dimension 2.
 - (h) Complex numbers form a vector space over the complex numbers of dimension 2.
- 2. Let $\mathbf{v} = (1, 2, 3)^T$ be a vector expressed in coordinates with respect to the standard basis of \mathbb{R}^3 . Find the coordinates of this vector with respect to the basis

$$m{b}_1 = egin{pmatrix} 0 \ 1 \ 1 \end{pmatrix} \;, \quad m{b}_2 = egin{pmatrix} 1 \ 0 \ 1 \end{pmatrix} \;, \quad m{b}_3 = egin{pmatrix} 1 \ 1 \ 0 \end{pmatrix} \;.$$

3. (E) Determine whether the following vectors form a basis of \mathbb{R}^4 . If not, obtain a basis by adding and/or removing vectors from the set.

$$oldsymbol{v}_1 = egin{pmatrix} 1 \ 0 \ 0 \ 1 \end{pmatrix}, \quad oldsymbol{v}_2 = egin{pmatrix} 1 \ -1 \ -1 \ 2 \end{pmatrix}, \quad oldsymbol{v}_3 = egin{pmatrix} 0 \ 1 \ -1 \ 1 \end{pmatrix}, \quad oldsymbol{v}_4 = egin{pmatrix} -1 \ 3 \ 1 \ 0 \end{pmatrix}.$$

- (A) Let V be a vector space, $\boldsymbol{b}_1, \ldots, \boldsymbol{b}_n$ a basis of V, and $\boldsymbol{v}_1, \ldots, \boldsymbol{v}_m$ where $m \leq n$ a set of linearly independent vectors in V. Show that you can construct another basis for V consisting of $\boldsymbol{v}_1, \ldots, \boldsymbol{v}_m$ and n-m vectors from among $\boldsymbol{b}_1, \ldots, \boldsymbol{b}_n$. Hint: Successively replace one of the \boldsymbol{b}_i by a vector \boldsymbol{v}_i .
- 4. Use the definition of the matrix inverse to show that $(AB)^{-1} = B^{-1}A^{-1}$.
- 5. Use the method taught in class to compute the inverse of

$$\begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}.$$

6. (E) Is the following matrix invertible? If yes, compute its inverse.

$$\begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix}.$$

- (A) Prove that the following are equivalent.
 - (a) $A \in M(n \times n)$ is invertible.
 - (b) Ker $A = \{ \boldsymbol{v} \in \mathbb{R}^n : A\boldsymbol{v} = 0 \}$ contains only the zero vector.
 - (c) The columns of A are linearly independent.