Engineering and Science Mathematics 2B

Homework 4

due March 6, 2013, before 12:00

Normal questions and advanced questions (A) are worth 5 points; easy questions (E) are worth 4 points. Complete either the easy, or the advanced version, not both.

1. Consider the vector space of functions that is spanned by the basis

$$
B=\{\sin x, \cos x, \sin 2 x, \cos 2 x\}
$$

Find the matrix representing the derivative operator with respect to the basis B.
2. Recall the definitions of range and kernel of a linear map A on the vector space \mathbb{R}^{n} :

$$
\begin{gathered}
\text { Range } A=\left\{A \boldsymbol{x}: \boldsymbol{x} \in \mathbb{R}^{n}\right\} \\
\operatorname{Ker} A=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: A \boldsymbol{x}=0\right\}
\end{gathered}
$$

(E) Let

$$
A=\left(\begin{array}{ccc}
-1 & 2 & -2 \\
1 & 2 & 6 \\
0 & 1 & 1
\end{array}\right)
$$

Find a basis for Range A and for $\operatorname{Ker} A$.
(A) Prove that $\operatorname{dim} \operatorname{Ker} A+\operatorname{dim}$ Range $A=n$.
3. Let

$$
A=\left(\begin{array}{ccc}
2 & 0 & 2 \\
0 & 2 & 0 \\
-2 & 0 & 2
\end{array}\right)
$$

represent a linear transformation on \mathbb{R}^{3} with respect to the standard basis $\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right\}$. Find the matrix A^{\prime} which represents this transformation with respect to the new basis

$$
\boldsymbol{e}_{1}^{\prime}=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right), \quad \boldsymbol{e}_{2}^{\prime}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right), \quad \boldsymbol{e}_{3}^{\prime}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)
$$

4. Compute the determinant

$$
\left|\begin{array}{llll}
1 & 2 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 7 & 3 \\
0 & 0 & 1 & 1
\end{array}\right| .
$$

5. (E) Use the determinant to test if the matrix

$$
A=\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
1 & -1 & 1
\end{array}\right)
$$

represents an invertible linear transformation.
(A) Use the definition of the determinant to show that a square matrix A is invertible if and only if and only if $\operatorname{det} A \neq 0$.
6. Show that a square matrix A is invertible if and only if all the eigenvalues of A are nonzero.
(Recall that λ is an eigenvalue of A and \boldsymbol{v} is the corresponding eigenvector if $A \boldsymbol{v}=\lambda \boldsymbol{v}$.)

