Engineering and Science Mathematics 2B

Homework 6

due April 3, 2013, before 12:00

Normal questions and advanced questions (A) are worth 5 points; easy questions (E) are worth 4 points. Complete either the easy, or the advanced version, not both.

1. Let f be a periodic function on the interval $[-\pi, \pi]$ with Fourier representation

$$
f(x)=\sum_{k=-\infty}^{\infty} c_{k} \mathrm{e}^{\mathrm{i} k x} \quad \text { where } \quad c_{k}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \mathrm{e}^{-\mathrm{i} k x} f(x) \mathrm{d} x .
$$

Show that when f is real, then $c_{k}^{*}=c_{-k}$.
2. Let f be a periodic function on the interval $[-\pi, \pi]$ with Fourier representation

$$
f(x)=\sum_{k=-\infty}^{\infty} c_{k} \mathrm{e}^{\mathrm{i} k x} \quad \text { where } \quad c_{k}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \mathrm{e}^{-\mathrm{i} k x} f(x) \mathrm{d} x .
$$

Express the Fourier coefficients of
(a) $f\left(x-x_{0}\right)$ where x_{0} is a constant,
(b) $f(-x)$,
(c) $f^{*}(x)$
in terms of the Fourier coefficients c_{k} of f.
3. Let f be a periodic function on the interval $[-\pi, \pi]$ with Fourier representation

$$
f(x)=\sum_{k=-\infty}^{\infty} c_{k} \mathrm{e}^{\mathrm{i} k x} \quad \text { where } \quad c_{k}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \mathrm{e}^{-\mathrm{i} k x} f(x) \mathrm{d} x .
$$

Express the Fourier coefficients of
(a) $f^{\prime}(x)$,
(b) $\int_{-\pi}^{x} f(\xi) \mathrm{d} \xi$ assuming that $c_{0}=0$
in terms of the Fourier coefficients c_{k} of f.
4. Compute the complex Fourier series of the function $f(x)=\mathrm{e}^{x}$ on the interval $[-\pi, \pi]$.
5. (E) Compute the complex Fourier series of the function $f(x)=|x|$ on the interval $[-\pi, \pi]$.
(A) In addition to (E), express f as a Fourier cosine series.
6. (E) Let

$$
\boldsymbol{v}=\left(\begin{array}{l}
1 \\
2 \\
0 \\
2
\end{array}\right)
$$

Compute the projection of \boldsymbol{v} onto the subspace spanned by the orthonormal vectors

$$
\boldsymbol{e}_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
0 \\
0 \\
-1
\end{array}\right), \quad \boldsymbol{e}_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right) .
$$

(A) An odd function of period 2π is approximated by a Fourier sine series having only N terms. The error in the approximation is measured by the mean-square deviation

$$
E_{N}=\int_{-\pi}^{\pi}\left[f(x)-\sum_{n=1}^{N} b_{n} \sin n x\right]^{2} \mathrm{~d} x .
$$

By differentiating E_{N} with respect to the coefficients b_{n}, find the values of b_{n} that minimize E_{N}.

