Engineering and Science Mathematics 2B

Homework 7

due April 10, 2013, before 12:00

Normal questions and advanced questions (A) are worth 5 points; easy questions (E) are worth 4 points. Complete either the easy, or the advanced version, not both.

1. Let $f(x)=\sin (4 x)$ on the interval $[0,2 \pi)$, periodically extended outside of this interval. Compute the complex Fourier coefficients c_{k} of f.
2. Find the Fourier transform of $f(x)=\mathrm{e}^{-|x|}$.
3. Show that the Fourier transform of $f(x+a)$ equals $\mathrm{e}^{\mathrm{i} a \xi} \tilde{f}(\xi)$.
4. (E) Show that $\widetilde{f^{\prime}}(\xi)=\mathrm{i} \xi \tilde{f}(\xi)$.

Hint: Integration by parts. You may assume that all boundary terms are zero when integrating by parts.
(A) By taking the Fourier transform of the equation

$$
\frac{d^{2} u}{d x^{2}}-u=f
$$

show that the solution $u(x)$ can be written as

$$
u(x)=\frac{-1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \frac{\mathrm{e}^{\mathrm{i} \xi x} \tilde{f}(\xi)}{1+\xi^{2}} \mathrm{~d} \xi
$$

where $\tilde{f}(\xi)$ is the Fourier transform of $f(x)$.
5. Compute the integral
(E) $\int_{-2}^{2} \delta(2 x) \cos x \mathrm{~d} x$,
(A) $\int_{-2 \pi}^{2 \pi} \delta\left(x^{2}-\pi^{2}\right) \cos x \mathrm{~d} x$.
6. (E) Let the Heavyside or unit step function be defined by

$$
H(x)= \begin{cases}0 & \text { for } x<0 \\ 1 & \text { for } x>0\end{cases}
$$

(The value at $x=0$ is of no concern to us.)
Show that, for $x \neq 0$,

$$
H(x)=\int_{-\infty}^{x} \delta(x) \mathrm{d} x
$$

(A) One can define (so-called distributional) derivatives of the δ-function via

$$
\int_{-\infty}^{\infty} f(x) \delta^{(n)}(x) \mathrm{d} x=(-1)^{n} f^{(n)}(0)
$$

for any n times differentiable function $f(x)$.
So we may be tempted to write a Taylor series for the δ-function,

$$
\delta(x+a)=\sum_{n=0}^{\infty} \frac{\delta^{(n)}(x)}{n!} a^{n}
$$

It appears that the left side is zero except at $x=-a$, while the right side is zero except at $x=0$. Resolve this paradox.

