Engineering and Science Mathematics 2B

Homework 9

due May 8, 2013, before 12:00

Normal questions and advanced questions (A) are worth 5 points; easy questions (E) are worth 4 points. Complete either the easy, or the advanced version, not both.

1. Let A and B be two statistically independent events. Suppose $P(A)=\frac{1}{3}$ and $P(B)=\frac{1}{4}$. Compute the probabilities $P(A \mid B), P(B \mid A), P(A \cup B), P(A \cap B), P(A-B)$, and $P(B-A)$.
2. A boy is selected at random from among the children belonging to families with n children.
(E) What is the probability that the boy has $k-1$ brothers?
(A) It is known that the boy has at least two sisters. Show that the probability that he has $k-1$ brothers is

$$
\frac{(n-1)!}{\left(2^{n-1}-n\right)(k-1)!(n-k)!}
$$

when $1 \leq k \leq n-2$, and zero for other values of k.
Hint: Use part (E) and Bayes' rule.
3. Gamblers A and B each have two unbiased four-sided dice, the four faces being numbered 1, 2, 3, 4. Without looking, B tries to guess the sum x of the numbers on the bottom faces of A 's two dice after they have been thrown onto a table. If the guess is correct, B receives x^{2} Euros, but if not he loses x Euros.
(E) Show that, when guessing the sum of x, B 's expected gain G per throw of A 's dice is

$$
E\left[G_{x}\right]=p_{x}\left(x^{2}+x\right)-x
$$

where p_{x} is the probability that the sum of the bottom faces is x.
(A) Compute the expected gain of B if he always guesses the sum of A 's bottom faces from the previous round.
4. In how many ways can 8 people be placed around a table if there are three who insist on sitting together?
5. Prove the following identities:
(E) ${ }^{n} \mathrm{C}_{k}{ }^{k} \mathrm{C}_{\ell}={ }^{n} \mathrm{C}_{\ell}{ }^{n-l} \mathrm{C}_{k-\ell}$
(A) $\sum_{i=0}^{k}{ }^{m} \mathrm{C}_{i}{ }^{n} \mathrm{C}_{k-i}={ }^{m+n} \mathrm{C}_{k}$
6. A royal family has children until it has a boy or until it has three children, whichever comes first. Assume that each child is a boy with probability $\frac{1}{2}$. Find the expected number of boys in this family and the expected number of girls.

