Introductory Partial Differential Equations

Final Exam

May 30, 2013

1. Recall that the solution to the heat equation

$$
\begin{gathered}
u_{t}-\Delta u=0 \quad \text { in } \mathbb{R}^{n} \times(0, \infty), \\
u=g \quad \text { on } \mathbb{R}^{n} \times\{t=0\}
\end{gathered}
$$

is given by

$$
u(x, t)=\int_{\mathbb{R}^{n}} \Phi(x-y, t) g(y) d y
$$

where, for $t>0$,

$$
\Phi(z, t)=\frac{1}{(4 \pi t)^{n / 2}} e^{-\frac{|z|^{2}}{4 t}}
$$

(a) Show that

$$
\sup _{x \in \mathbb{R}^{n}}|u(x, t)| \leq \frac{C}{t^{n / 2}}
$$

provided that

$$
\|g\|_{L^{1}}=\int_{\mathbb{R}^{n}}|g(x)| \mathrm{d} x<\infty .
$$

(b) Suppose w solves the Poisson equation

$$
-\Delta w=f \quad \text { in } \mathbb{R}^{n}
$$

where f is smooth and compactly supported. Show that the solution to the inhomogeneous heat equation

$$
\begin{gathered}
u_{t}-\Delta u=f \quad \text { in } \mathbb{R}^{n} \times(0, \infty), \\
u=g \quad \text { on } \mathbb{R}^{n} \times\{t=0\}
\end{gathered}
$$

tends to w as $t \rightarrow \infty$, i.e., that

$$
\lim _{t \rightarrow \infty} u(x, t)=w(x)
$$

for every $x \in \mathbb{R}^{n}$.
2. Let U be the open unit ball in \mathbb{R}^{n}. Suppose that $u \in C_{1}^{2}\left(\bar{U}_{T}\right)$ solves the heat equation

$$
\begin{array}{cc}
u_{t}-\Delta u=0 \quad \text { in } U_{T}, \\
u=g \quad & \text { on } U \times\{t=0\}, \tag{H}\\
u=0 & \text { on } \partial U \times[0, T],
\end{array}
$$

where $U_{T}=U \times(0, T]$ and $g=0$ on ∂U.
(a) Show that a radial solution $u(x, t) \equiv v(r, t)$ with $r=|x|$ satisfies

$$
\begin{gather*}
v_{t}=\frac{1}{r^{n-1}} \frac{\partial}{\partial r}\left(r^{n-1} \frac{\partial v}{\partial r}\right) \quad \text { in }(0,1) \times(0, T], \\
v=g \quad \text { on }(0,1) \times\{t=0\}, \tag{R}\\
v=0 \quad \text { on }\{r=1\} \times[0, T]
\end{gather*}
$$

(b) Show that if $v \in C_{1}^{2}([0,1] \times[0, T])$ solves (R), it is the unique such solution.
(In particular, show that a boundary condition at $r=0$ is not required. Why would you expect this to be so?)
(c) When setting up a numerical discretization scheme for (R), a boundary condition at $r=0$ might be necessary. What condition could you suggest?
3. Consider the linear transport equation

$$
\begin{gathered}
u_{t}+b u_{x}=0 \quad \text { in } \mathbb{R} \times(0, \infty), \\
u=g \quad \text { on } \mathbb{R} \times\{t=0\} .
\end{gathered}
$$

We say that $u \in L^{\infty}(\mathbb{R} \times(0, \infty))$ is an integral solution of the transport equation provided

$$
\int_{0}^{\infty} \int_{\mathbb{R}} u\left(v_{t}+b v_{x}\right) \mathrm{d} x \mathrm{~d} t+\int_{\mathbb{R}} g(x) v(x, 0) \mathrm{d} x=0
$$

for all $v \in C_{c}^{\infty}(\mathbb{R} \times[0, \infty))$.
(a) Suppose that $g \in C(\mathbb{R})$ and that $u \in C^{1}(\mathbb{R} \times[0, \infty))$ is an integral solution. Show that u solves the transport equation in the classical sense.
(b) Now suppose that $g(x)$ is bounded and smooth except at some $a \in \mathbb{R}$ where it has a jump discontinuity. Show that $u(x, t)=g(x-b t)$ is an integral solution.
4. Find the entropy solution for Burgers' equation

$$
\begin{gathered}
u_{t}+u u_{x}=0 \quad \text { in } \mathbb{R} \times(0, \infty), \\
u=g \quad \text { on } \mathbb{R} \times\{t=0\} .
\end{gathered}
$$

with initial data

$$
g(x)= \begin{cases}1-x & \text { for } x \in[0,1] \\ 0 & \text { otherwise }\end{cases}
$$

(a) on the interval $t \in(0,1)$;
(b) for $t \geq 1$.

Hint: Recall that the Rankine-Hugoniot shock condition for a conservation law of the form $u_{t}+F(u)_{x}=0$ states that the solution at an isolated shock curve parameterized by $(s(t), t)$ satisfies $\dot{s}[u]=[F(u)]$, the brackets denoting the jump of the enclosed quantity across the shock.
5. Let $u \in C\left(\mathbb{R}^{3}, \mathbb{R}^{3}\right)$ be a vector field with

$$
|u(x)| \leq \frac{1}{1+|x|^{3}}
$$

Show that

$$
\begin{equation*}
\int_{\mathbb{R}^{3}} \operatorname{div} u \mathrm{~d} x=0 . \tag{10}
\end{equation*}
$$

6. Let $u(x, t)$ be a smooth solution to the Korteweg-de Vries equation

$$
u_{t}-6 u u_{x}+u_{x x x}=0
$$

on $\mathbb{R} \times(0, \infty)$ such that for every fixed $t \geq 0, u(x, t)$ and all its derivatives converge to zero as $|x| \rightarrow \infty$.

Show that

$$
\begin{equation*}
E(t)=\int_{\mathbb{R}} u(x, t)^{2} \mathrm{~d} x \tag{10}
\end{equation*}
$$

remains constant in time.

