Introductory Partial Differential Equations

Midterm Exam

March 21, 2013

1. Let $g=C^{1}(\mathbb{R})$. Solve the partial differential equation

$$
\begin{gather*}
(x+t)\left(u_{x}+u_{t}\right)=0 \quad \text { in } \mathbb{R} \times(0, \infty), \\
u=g \quad \text { on } \mathbb{R} \times\{t=0\} . \tag{10}
\end{gather*}
$$

2. Suppose that a radial function $u=u(|x|)$ is harmonic on $B(0,1) \subset \mathbb{R}^{n}$. Show that $u \equiv$ const.
3. Suppose that $U \subset \mathbb{R}^{n}$ is open, connected, and bounded with smooth boundary. Suppose further that $u \in C^{2}(\bar{U})$ solves the Neumann problem for the Poisson equation

$$
\begin{aligned}
-\Delta u=f & \text { in } U, \\
\nu \cdot D u=g & \text { on } \partial U
\end{aligned}
$$

for some $f \in C(\bar{U})$ and $g \in C(\partial U)$, where ν denotes the outer unit normal on ∂U.
Show that any other solution differs from u by only a constant.
4. Suppose that $u \in C_{1}^{2}\left(\mathbb{R}^{n} \times(0, \infty)\right) \cap C\left(\mathbb{R}^{n} \times[0, \infty)\right)$ solves the heat equation

$$
u_{t}-\Delta u=0 \quad \text { in } \mathbb{R}^{n} \times(0, \infty)
$$

and is a Gaussian at the initial time, i.e.,

$$
\begin{equation*}
u(x, 0)=a \mathrm{e}^{-b|x|^{2}} \tag{10}
\end{equation*}
$$

with some $a \in \mathbb{R}$ and $b>0$. Prove that u remains Gaussian for all times $t>0$.
5. Recall that the solution to the heat equation

$$
\begin{gathered}
u_{t}-\Delta u=0 \quad \text { in } \mathbb{R}^{n} \times(0, \infty), \\
u=g \quad \text { on } \mathbb{R}^{n} \times\{t=0\}
\end{gathered}
$$

is given by

$$
u(x, t)=\int_{\mathbb{R}^{n}} \Phi(x-y, t) g(y) d y
$$

where, for $t>0$,

$$
\Phi(z, t)=\frac{1}{(4 \pi t)^{n / 2}} e^{-\frac{|z|^{2}}{4 t}} .
$$

Assume that g is continuous and compactly supported. Show that there exists a $C>0$ such that

$$
\begin{equation*}
|D u(x, t)| \leq \frac{C}{\sqrt{t}}\|g\|_{L^{\infty}} . \tag{10}
\end{equation*}
$$

6. Let $U \subset \mathbb{R}^{n}$ be open and bounded with smooth boundary. Let $b \in C^{1}(\bar{U})$ satisfy

$$
\begin{gathered}
\operatorname{div} b \equiv D \cdot b=0 \quad \text { in } U, \\
\nu \cdot b=0 \quad \text { on } \partial U .
\end{gathered}
$$

Further, suppose that $u \in C^{1}(\bar{U} \times[0, T])$ solves the transport equation

$$
u_{t}+b \cdot D u=0 \quad \text { in } U
$$

(a) Show that

$$
M=\int_{U} u d x
$$

is constant in time.
(b) In a modeling scenario, u could describe the concentration of a certain substance in the container U. Give a corresponding physical interpretation of the result from (a). Further, what is the physical meaning of each of two conditions on b ?

