Partial Differential Equations

Midterm Exam

March 27, 2014

- 1. Let $U \subset \mathbb{R}^n$ be open and bounded. Show that $H_0^1(U)$ is a strict subspace of $H^1(U)$. (5)
- 2. Let $U \subset \mathbb{R}^n$ be open and bounded with C^1 boundary. Let 1 and define the Hölder conjugate <math>p' by

$$\frac{1}{p} + \frac{1}{p'} = 1$$

Show that $u \in W_0^{1,p}(U)$ if and only if $u \in L^p(U)$ and there exists a constant C = C(u) such that

$$\left| \int_{U} u \, D\phi \, \mathrm{d}x \right| \le C \, \|\phi\|_{L^{p'}(U)}$$

("only if" 5 + "if" 10)

for all $\phi \in C^{\infty}(\mathbb{R}^n)$.

Hints: Note the class of test functions is arbitrary smooth functions on \mathbb{R}^n restricted to U! Further, recall that $u \in W_0^{1,p}(U)$ if and only if $u \in W^{1,p}(U)$ and its trace is zero. (10)

3. Let $U \subset \mathbb{R}^n$ be open and bounded with C^1 boundary. Let $h \in C^2(U) \cap C^1(\overline{U})$ and suppose further that there exists a constant $\theta > 0$ such that $h(x) \ge \theta$ and $\Delta h(x) \ge \theta$ for all $x \in U$.

Show that the equation

$$-h\Delta u - 3Dh \cdot Du = f \quad \text{in } U,$$
$$u = 0 \quad \text{on } \partial U$$

has a unique weak solution $u \in H_0^1(U)$ for every $f \in H^{-1}(U)$. (10)

4. State a condition on $f \in L^2(0,\pi)$ such that the equation

$$-\frac{\mathrm{d}^2 u}{\mathrm{d}x^2} - u = f(x) \quad \text{on } (0,\pi)$$
$$u(0) = u(\pi) = 0$$

,

has a weak solution $u \in H_0^1(0,\pi)$. If it does, will the solution be unique? (10)

5. Let $c \in C(\mathbb{R}^n)$ with $c(x) \ge 1$ for all $x \in \mathbb{R}^n$. Let $u \in C^2(\mathbb{R}^n)$ satisfy

$$-\Delta u + c \, u = 1$$

and assume further that supp(Du) is compact. Show that $u \leq 1$. *Hint:* Consider the function v = u - 1. (10)