Partial Differential Equations

Midterm Exam

March 27, 2014

1. Let $U \subset \mathbb{R}^{n}$ be open and bounded. Show that $H_{0}^{1}(U)$ is a strict subspace of $H^{1}(U)$.
2. Let $U \subset \mathbb{R}^{n}$ be open and bounded with C^{1} boundary. Let $1<p<\infty$ and define the Hölder conjugate p^{\prime} by

$$
\frac{1}{p}+\frac{1}{p^{\prime}}=1
$$

Show that $u \in W_{0}^{1, p}(U)$ if and only if $u \in L^{p}(U)$ and there exists a constant $C=C(u)$ such that

$$
\left|\int_{U} u D \phi \mathrm{~d} x\right| \leq C\|\phi\|_{L^{p^{\prime}}(U)}
$$

for all $\phi \in C^{\infty}\left(\mathbb{R}^{n}\right)$.
("only if" $5+$ "if" 10)
Hints: Note the class of test functions is arbitrary smooth functions on \mathbb{R}^{n} restricted to U ! Further, recall that $u \in W_{0}^{1, p}(U)$ if and only if $u \in W^{1, p}(U)$ and its trace is zero. (10)
3. Let $U \subset \mathbb{R}^{n}$ be open and bounded with C^{1} boundary. Let $h \in C^{2}(U) \cap C^{1}(\bar{U})$ and suppose further that there exists a constant $\theta>0$ such that $h(x) \geq \theta$ and $\Delta h(x) \geq \theta$ for all $x \in U$.
Show that the equation

$$
\begin{gather*}
-h \Delta u-3 D h \cdot D u=f \quad \text { in } U, \\
u=0 \quad \text { on } \partial U \tag{10}
\end{gather*}
$$

has a unique weak solution $u \in H_{0}^{1}(U)$ for every $f \in H^{-1}(U)$.
4. State a condition on $f \in L^{2}(0, \pi)$ such that the equation

$$
\begin{gather*}
-\frac{\mathrm{d}^{2} u}{\mathrm{~d} x^{2}}-u=f(x) \quad \text { on }(0, \pi), \\
u(0)=u(\pi)=0 \tag{10}
\end{gather*}
$$

has a weak solution $u \in H_{0}^{1}(0, \pi)$. If it does, will the solution be unique?
5. Let $c \in C\left(\mathbb{R}^{n}\right)$ with $c(x) \geq 1$ for all $x \in \mathbb{R}^{n}$. Let $u \in C^{2}\left(\mathbb{R}^{n}\right)$ satisfy

$$
-\Delta u+c u=1
$$

and assume further that $\operatorname{supp}(D u)$ is compact.
Show that $u \leq 1$.
Hint: Consider the function $v=u-1$.

