Partial Differential Equations

Homework 2

due March 4, 2014

1. Let U be open. Find an exponent $\theta \in(0,1)$ such that

$$
\|u\|_{L^{q}} \leq\|u\|_{L^{p}}^{\theta}\|u\|_{L^{r}}^{1-\theta}
$$

for all $u \in L^{p}(U) \cap L^{r}(U)$ and $1 \leq p \leq q \leq r \leq \infty$.
2. Evans, p. 290, Problem 6
3. Evans, p. 290, Problem 8
4. Evans, p. 290, Problem 9
5. Show that the Rellich-Kondrachov is sharp, i.e., that $W^{1, p}$ is not compactly embedded into $L^{p^{*}}$ where $p^{*}=n p /(n-p)$ is the Sobolev conjugate.
Hint: Consider sequences of dilations

$$
u_{m}(x)=m^{\alpha} u(m x)
$$

of a compactly supported function $u \in W^{1, p}$.
6. Evans, p. 291, Problem 10

Hint: Look at the proof of Morrey's inequality in Evans (not covered in class).

