General Mathematics and CPS II

Exercise 10

March 6, 2015

1. Let G be a group, and let H and K be subgroups of G. Show that $H \cap K$ is also a subgroup of G.
2. (Ivanov, p. 41, Exercise.) Let R_{α} denote the reflection about the line $x=\alpha$. Let G be the (symmetry) group generated by the unit translation along the x-axis and by R_{0}. Show that $R_{\alpha} \in G$ if and only if $2 \alpha \in \mathbb{Z}$.
3. Draw an ornament corresponding to each of the seven ornament groups, see Ivanov pp. 41-42. Make sure that each example has precisely the symmetries of the respective case, and no more.
