General Mathematics and CPS II

Exercise 14

March 27, 2015

1. Kac ring paper, Exercise 14.
2. Fix $N \in \mathbb{N}$. Let S denote the $N \times N$ circular shift matrix

$$
S=\left(\begin{array}{ccccc}
0 & 0 & \cdots & 0 & 1 \\
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & 1 & 0
\end{array}\right)
$$

Further, let M denote the diagonal matrix

$$
M=\left(\begin{array}{ccccc}
m_{1} & 0 & & & \\
0 & m_{2} & \ddots & & \\
& \ddots & \ddots & \ddots & \\
& & \ddots & \ddots & 0 \\
& & & 0 & m_{N}
\end{array}\right)
$$

where $\left|m_{1}\right|=\cdots=\left|m_{N}\right|=1$.
Show that $\left\{(S M)^{i}: i \in \mathbb{Z}\right\}$ is a group. What is its order?
3. There is a correspondence of the construction in Questions 3 with the Kac ring model. Explain! Further, there is a correspondence of this construction with glide reflections. Explain!

