General Mathematics and Computational Science II

Final Exam

May 22, 2015

1. A bipartite graph with vertex sets V_{1} and V_{2} is regular if every vertex in V_{1} has degree d_{1} and every vertex in V_{2} has degree d_{2}.
Show that there exists a matching from V_{1} into V_{2} provided $d_{1} \geq d_{2}>0$.
2. Let H_{A} denote the point reflection about a point A with coordinates \boldsymbol{a}. Let $\Pi_{\boldsymbol{v}}$ denote the translation by a vector \boldsymbol{v}.
(a) Show that $H_{A} \circ H_{B}=\Pi_{2(\boldsymbol{a}-\boldsymbol{b})}$.
(b) Show that $H_{A} \circ H_{B}=H_{B} \circ H_{C}$ if and only if B is the midpoint of the line segment $A C$.
(c) What can you say about the relative locations of A, B, C, and D in the case $H_{A} \circ H_{B} \circ H_{C} \circ H_{D}=\mathrm{Id} ?$
3. Let G_{1} and G_{2} be two finite Abelian groups, written additively. We define the direct sum $H=G_{1} \oplus G_{2}$ as the set of ordered tuples $h=\left(g_{1}, g_{2}\right)$ with $g_{1} \in G_{1}$ and $g_{2} \in G_{2}$.
(a) Define a + -operation on H that makes it an Abelian group.
(b) Verify explicitly that with your definition you indeed obtain an Abelian group.
(c) What is the order of H ?
(d) Let $\chi_{i}: G_{i} \rightarrow \mathbb{C} \backslash\{0\}$ be a character for $i=1,2$. Show that

$$
\psi(h)=\chi_{1}\left(g_{1}\right) \cdot \chi_{2}\left(g_{2}\right)
$$

defines a character on H.
(Recall that $\chi_{i}: G_{i} \rightarrow \mathbb{C} \backslash\{0\}$ is a character if it is a group homomorphism into $\mathbb{C} \backslash\{0\}$, the group of nonzero complex numbers endowed with multiplication.)
(e) Show that every character on H is of this form.

$$
(5+5+5+5+5)
$$

4. Consider the linear programming problem

$$
\operatorname{maximize} z=2 x_{1}+x_{2}
$$

subject to

$$
\begin{gathered}
-x_{1}+x_{2} \leq 1, \\
x_{1}-2 x_{2} \leq 2, \\
x_{1}, x_{2} \geq 0
\end{gathered}
$$

(a) Determine the solvability of this problem and find the solution if it exists, using the simplex method.
(b) Draw the feasible region and the level lines of the objective function; check for consistency with your answer in part (a).
(c) Write out the dual problem and determine its solvability. (No computation required.)
5. Show that the problems

$$
A \boldsymbol{x}=\boldsymbol{b}, \quad \boldsymbol{x} \geq \mathbf{0}
$$

and

$$
\begin{equation*}
\boldsymbol{y}^{T} A \geq \mathbf{0}, \quad \boldsymbol{y}^{T} \boldsymbol{b}<0 \tag{10}
\end{equation*}
$$

cannot both have a solution.
(In fact, Farkas' lemma states that excatly one of the two has a solution, but the complete proof is substantially more difficult.)
6. Recall that

$$
\tilde{v}_{k}=\frac{1}{N} \sum_{j=0}^{N-1} \mathrm{e}^{-\mathrm{i} k j h} v_{j}
$$

with $h=2 \pi / N$ denotes the discrete Fourier transform of the complex numbers v_{0}, \ldots, v_{N-1}. Define the discrete convolution of vectors $\boldsymbol{v}=\left(v_{0}, \ldots, v_{N-1}\right)$ and $\boldsymbol{w}=\left(w_{0}, \ldots, w_{N-1}\right)$ by

$$
(\boldsymbol{v} \circledast \boldsymbol{w})_{j}=\frac{1}{N} \sum_{\ell=0}^{N-1} v_{\ell} w_{j-\ell}
$$

where all indices are understood modulo N.
Show that

$$
\begin{equation*}
\left(\boldsymbol{v} \circledast \boldsymbol{w} \tilde{)}_{k}=\tilde{v}_{k} \tilde{w}_{k} .\right. \tag{10}
\end{equation*}
$$

7. A 2π-periodic signal is sampled N times in the interval 2π. Suppose the signal contains only a fundamental frequency with wavenumber $k_{0}=\frac{2}{5} N$ and its first harmonic at $k_{1}=\frac{4}{5} N$.
(a) Which frequencies does the trigonometric interpolant of the samples contain?
(b) Extra credit. What does the reconstruction sound like? And what happens for different fundamental frequencies k_{0} ?

Hint: Recall the aliasing formula

$$
\tilde{u}_{k}=\sum_{m \in \mathbb{Z}} \hat{u}_{k+m N}
$$

for $k=-N / 2, \ldots, N / 2-1$.

