General Mathematics and Computational Science II

Midterm Exam

March 13, 2015

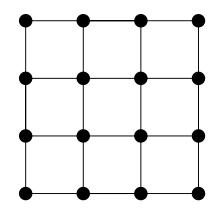
1. A bipartite graph with vertex sets V_1 and V_2 is *complete* if there is an edge between every vertex in V_1 and every vertex in V_2 .

Notation: The complete bipartite graph with $|V_1| = n$ and $|V_2| = m$ is called $K_{n,m}$. $K_{1,m}$, for any $m \in \mathbb{N}$, is called a *star*.

- (a) What is the number of edges of $K_{n,m}$?
- (b) Show that if a graph is complete bipartite and is a tree, then it is a star.
- (c) Show that $K_{3,3}$ cannot be embedded in the plane.

(5+5+5)

2. In the following graph, find the shortest closed path that traverses every edge at least once.

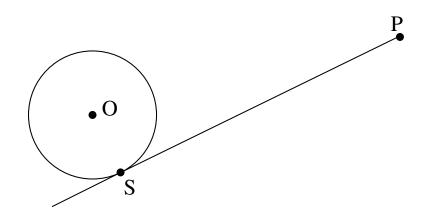


Your answer should include

- (a) a correct solution;
- (b) an argument that there is no shorter such path.

(5+5)

3. Given a circle with center O and a point P outside of it, suggest a construction using only Euclidean transformations (translation, reflection, rotation) to find a point S on the circle where the line segment PS is tangent to the circle. (10)



4. Given two lines ℓ_1 and ℓ_2 , set $\ell'_2 = R_{\ell_1}(\ell_2)$, i.e., ℓ'_2 is the reflection of ℓ_2 about ℓ_1 . Show that

$$R_{\ell_2} R_{\ell_1} = R_{\ell_1} R_{\ell_2'} .$$
(5)

- 5. For each of the following, determine whether or not it is a group. If it is a group, give a full argument why; if it is not, state at at least one property that fails.
 - (a) The set of real $n \times n$ matrices under matrix multiplication;
 - (b) the orientation-preserving motions of the plane under composition;
 - (c) the orientation-reversing motions of the plane under composition.

(A motion or Euclidean transformations of the plane is called orientation-preserving if a clock-wise traversal of a cycle is mapped onto clock-wise traversal of its image; it is orientation-reversing otherwise.) (4+3+3)

6. Let R_{α} denote the reflection about the line $x = \alpha$. Let G be the (symmetry) group generated by the unit translation along the x-axis and by R_0 . Show that $R_{\alpha} \in G$ if and only if $2\alpha \in \mathbb{Z}$. (10)