General Mathematics and Computational Science II

Midterm Exam

March 13, 2015

1. A bipartite graph with vertex sets V_{1} and V_{2} is complete if there is an edge between every vertex in V_{1} and every vertex in V_{2}.
Notation: The complete bipartite graph with $\left|V_{1}\right|=n$ and $\left|V_{2}\right|=m$ is called $K_{n, m}$. $K_{1, m}$, for any $m \in \mathbb{N}$, is called a star.
(a) What is the number of edges of $K_{n, m}$?
(b) Show that if a graph is complete bipartite and is a tree, then it is a star.
(c) Show that $K_{3,3}$ cannot be embedded in the plane.
2. In the following graph, find the shortest closed path that traverses every edge at least once.

Your answer should include
(a) a correct solution;
(b) an argument that there is no shorter such path.
3. Given a circle with center O and a point P outside of it, suggest a construction using only Euclidean transformations (translation, reflection, rotation) to find a point S on the circle where the line segment $P S$ is tangent to the circle.

4. Given two lines ℓ_{1} and ℓ_{2}, set $\ell_{2}^{\prime}=R_{\ell_{1}}\left(\ell_{2}\right)$, i.e., ℓ_{2}^{\prime} is the reflection of ℓ_{2} about ℓ_{1}.

Show that

$$
\begin{equation*}
R_{\ell_{2}} R_{\ell_{1}}=R_{\ell_{1}} R_{\ell_{2}^{\prime}} . \tag{5}
\end{equation*}
$$

5. For each of the following, determine whether or not it is a group. If it is a group, give a full argument why; if it is not, state at at least one property that fails.
(a) The set of real $n \times n$ matrices under matrix multiplication;
(b) the orientation-preserving motions of the plane under composition;
(c) the orientation-reversing motions of the plane under composition.
(A motion or Euclidean transformations of the plane is called orientation-preserving if a clock-wise traversal of a cycle is mapped onto clock-wise traversal of its image; it is orientation-reversing otherwise.)
$(4+3+3)$
6. Let R_{α} denote the reflection about the line $x=\alpha$. Let G be the (symmetry) group generated by the unit translation along the x-axis and by R_{0}. Show that $R_{\alpha} \in G$ if and only if $2 \alpha \in \mathbb{Z}$.
