Introductory Partial Differential Equations

Midterm Exam

March 23, 2015

1. Solve the inhomogeneous transport equation

$$u_t + u_x + t e^{-x} = 0 \quad \text{in } \mathbb{R} \times (0, \infty),$$
$$u(x, 0) = e^{-x} \quad \text{on } \mathbb{R}.$$

2. Suppose $u \colon \mathbb{R}^n \to \mathbb{R}$ is harmonic with

$$\int_{\mathbb{R}^n} |u| \, dx < \infty$$

Show that this implies u = 0.

3. Suppose u is a harmonic function on \mathbb{R}^n with $n\geq 2$ such that

$$u(x) = x_1 + x_2 \qquad \text{on } \partial B(0,1) \,.$$

- (a) What are the minimum and maximum values of u on B(0,1)?
- (b) Find u(0).

(5+5)

(10)

(5)

4. Let $U \subset \mathbb{R}^n$ be open and bounded with smooth boundary. Let $u \in C^2(\overline{U})$ be a solution to the *Helmholtz equation* with Neumann boundary conditions,

$$-\Delta u + u = f \quad \text{in } U,$$

$$\nu \cdot Du = g \quad \text{on } \partial U.$$

- (a) Show that u is the unique such solution.
- (b) What can you say about uniqueness of solutions to the Poisson equation $\Delta u = f$ in otherwise the same setting?

(5+5)

5. Recall that the solution to the heat equation

$$u_t - \Delta u = 0 \quad \text{in } \mathbb{R} \times (0, \infty) ,$$
$$u = g \quad \text{on } \mathbb{R} \times \{t = 0\}$$

is given by

$$u(x,t) = \int_{\mathbb{R}} \Phi(x-y,t) g(y) \, dy \,,$$

where, for t > 0,

$$\Phi(z,t) = \frac{1}{\sqrt{4\pi t}} e^{-\frac{|z|^2}{4t}}.$$

(a) Show that for every $g \in L^1(\mathbb{R})$ there exists a constant c > 0 such that

$$\sup_{x \in \mathbb{R}} |u(x,t)| \le \frac{c}{\sqrt{t}}.$$

(b) Show that for every $g = h_x$ with $h \in L^1(\mathbb{R})$ there exists a constant c > 0 such that

$$\sup_{x\in\mathbb{R}}|u(x,t)|\leq\frac{c}{t}.$$

(c) Give a qualitative explanation for (b) vs. (a).

(5+5+5)

(10)

6. Consider the equation¹

$$u_t - u_{xxt} + 3 u u_x = 2 u_x u_{xx} + u u_{xxx} \quad \text{in } \mathbb{R} \times (0, \infty) ,$$
$$u = g \quad \text{on } \mathbb{R} \times \{t = 0\} .$$

Suppose that u is a solution such that $u(x, t) \to 0$ as $x \to \pm \infty$ with u_x and u_{xx} bounded for every fixed $t \ge 0$.

Show that

$$M(t) = \int_{\mathbb{R}} \left(u^2 + u_x^2 \right) dx$$

is a constant of the motion.

¹This equation is most commonly known as the Camassa–Holm equation, though its derivation goes back to Fokas and Fuchssteiner.