Introductory Partial Differential Equations

Midterm Exam

March 23, 2015

1. Solve the inhomogeneous transport equation

$$
\begin{gather*}
u_{t}+u_{x}+t \mathrm{e}^{-x}=0 \quad \text { in } \mathbb{R} \times(0, \infty), \\
u(x, 0)=\mathrm{e}^{-x} \quad \text { on } \mathbb{R} \tag{10}
\end{gather*}
$$

2. Suppose $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is harmonic with

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}|u| d x<\infty . \tag{5}
\end{equation*}
$$

Show that this implies $u=0$.
3. Suppose u is a harmonic function on \mathbb{R}^{n} with $n \geq 2$ such that

$$
u(x)=x_{1}+x_{2} \quad \text { on } \partial B(0,1) .
$$

(a) What are the minimum and maximum values of u on $\overline{B(0,1)}$?
(b) Find $u(0)$.
4. Let $U \subset \mathbb{R}^{n}$ be open and bounded with smooth boundary. Let $u \in C^{2}(\bar{U})$ be a solution to the Helmholtz equation with Neumann boundary conditions,

$$
\begin{array}{cc}
-\Delta u+u=f & \text { in } U, \\
\nu \cdot D u=g & \text { on } \partial U .
\end{array}
$$

(a) Show that u is the unique such solution.
(b) What can you say about uniqueness of solutions to the Poisson equation $\Delta u=f$ in otherwise the same setting?
5. Recall that the solution to the heat equation

$$
\begin{gathered}
u_{t}-\Delta u=0 \quad \text { in } \mathbb{R} \times(0, \infty), \\
u=g \quad \text { on } \mathbb{R} \times\{t=0\}
\end{gathered}
$$

is given by

$$
u(x, t)=\int_{\mathbb{R}} \Phi(x-y, t) g(y) d y
$$

where, for $t>0$,

$$
\Phi(z, t)=\frac{1}{\sqrt{4 \pi t}} \mathrm{e}^{-\frac{|z|^{2}}{4 t}}
$$

(a) Show that for every $g \in L^{1}(\mathbb{R})$ there exists a constant $c>0$ such that

$$
\sup _{x \in \mathbb{R}}|u(x, t)| \leq \frac{c}{\sqrt{t}}
$$

(b) Show that for every $g=h_{x}$ with $h \in L^{1}(\mathbb{R})$ there exists a constant $c>0$ such that

$$
\sup _{x \in \mathbb{R}}|u(x, t)| \leq \frac{c}{t} .
$$

(c) Give a qualitative explanation for (b) vs. (a).
6. Consider the equation ${ }^{1}$

$$
\begin{gathered}
u_{t}-u_{x x t}+3 u u_{x}=2 u_{x} u_{x x}+u u_{x x x} \quad \text { in } \mathbb{R} \times(0, \infty), \\
u=g \quad \text { on } \mathbb{R} \times\{t=0\}
\end{gathered}
$$

Suppose that u is a solution such that $u(x, t) \rightarrow 0$ as $x \rightarrow \pm \infty$ with u_{x} and $u_{x x}$ bounded for every fixed $t \geq 0$.

Show that

$$
\begin{equation*}
M(t)=\int_{\mathbb{R}}\left(u^{2}+u_{x}^{2}\right) d x \tag{10}
\end{equation*}
$$

is a constant of the motion.

[^0]
[^0]: ${ }^{1}$ This equation is most commonly known as the Camassa-Holm equation, though its derivation goes back to Fokas and Fuchssteiner.

